Presenting a size-dependent electro-mechanical model for rectangular plates-based resonant micro-sensors based on modified couple stress theory

Amir Reza Askari, Masoud Tahani*

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
* P.O.B. 91775-1111, Mashhad, Iran, mtahani@um.ac.ir

Abstract
Rectangular plates-based resonant micro-sensors utilize the resonance frequency of electrically pre-deformed clamped micro-plates for sensing. Free vibration analysis of such systems in order to find their resonance frequency is the objective of present paper. For this aim, the modified couple stress theory (MCST) together with the Kirchhoff plate model is considered and the size-dependent equation of motion which accounts for the effect of axial residual stresses as well as the non-linear and distributed electrostatic force is derived using the Hamilton's principle. The lowest frequency of the system as the resonance frequency of these micro-plates is extracted using a single mode Galerkin based reduced order model (ROM). It is found that the fundamental frequency of the system is decreased with an increase of applied voltage and becomes zero when the input voltage reaches the pull-in voltage of the system. The findings of present paper are compared and validated by available results in the literature and an excellent agreement between them is observed. Also it is found that using the MCST in pull-in analysis of clamped rectangular micro-plates can remove the existing gap between the results of classical theory (CT) and available empirical observations. Furthermore, it is observed that accounting for the size-effect on free vibration analysis of electrostatically de-processed micro-plates is more essential than flat ones.

ARTICLE INFORMATION
Original Research Paper
Received 16 April 2014
Accepted 13 June 2014
Available Online 17 September 2014

Keywords:
MEMS
Clamped rectangular micro-plates
Reduced order model
Fundamental frequency
Pull-in voltage

References
دیلی این تکثیر و پیش‌بینی به‌طور معمول توسط روش‌های مختلف مورد استفاده قرار می‌گیرد. از جمله این روش‌ها می‌توان به روش‌های خودگرایانه، تکثیر دینامیک و روش‌های آزمایشگاهی اشاره کرد.

با توجه به اینکه هر نوع روش‌های تکثیر می‌تواند برای ارزیابی وضعیت سیستم به‌صورت دقیق عملکرد و اثرات آن را مشخص کند، این روش‌ها در مطالعات و آزمایش‌های مختلف به‌کار گرفته می‌شوند.

به‌طور کلی، روش‌های تکثیر در مطالعات و آزمایش‌های مختلف به‌کار گرفته می‌شوند و می‌تواند برای ارزیابی وضعیت سیستم به‌صورت دقیق عملکرد و اثرات آن را مشخص کند. بنابراین، این روش‌ها در مطالعات و آزمایش‌های مختلف به‌کار گرفته می‌شوند.
که در آن، $\sigma, \bar{\sigma}$، و $\ddot{\sigma}$ بر تنش تنشی و $\dot{\sigma}$ و $\dddot{\sigma}$ بر تنش کشی، بخش اجرایی تنش کشی و تنشی تنش‌گذاران اینهای نشان‌دهنده مسئولیت تنشی و جایگاهی‌ها از استفاده از رابطه (2) (ن) بسته می‌شود.

\[\sigma = \lambda \varepsilon + 2\mu \varepsilon \]
\[\ddot{\sigma} = \frac{1}{2} \left(\frac{\partial \sigma}{\partial x} + \frac{\partial \sigma}{\partial y} + \frac{\partial \sigma}{\partial z} \right) \]
\[\dot{\sigma} = \frac{1}{2} \left(\frac{\partial \sigma}{\partial x} + \frac{\partial \sigma}{\partial y} + \frac{\partial \sigma}{\partial z} \right) \]
\[\varepsilon = \frac{1}{2} \left(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \right) \]
\[\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \]
\[\bar{\sigma} = \lambda \varepsilon + 2\mu \varepsilon \]
\[\ddot{\bar{\sigma}} = \frac{1}{2} \left(\frac{\partial \bar{\sigma}}{\partial x} + \frac{\partial \bar{\sigma}}{\partial y} + \frac{\partial \bar{\sigma}}{\partial z} \right) \]
\[\dot{\bar{\sigma}} = \frac{1}{2} \left(\frac{\partial \bar{\sigma}}{\partial x} + \frac{\partial \bar{\sigma}}{\partial y} + \frac{\partial \bar{\sigma}}{\partial z} \right) \]
\[\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial \varepsilon_{ij}}{\partial x} + \frac{\partial \varepsilon_{ij}}{\partial y} + \frac{\partial \varepsilon_{ij}}{\partial z} \right) \]

\[U = \frac{1}{2} \left(\sigma : \varepsilon + \dot{m} \ddot{\sigma} + \frac{1}{2} \left(\frac{\partial \sigma}{\partial x} + \frac{\partial \sigma}{\partial y} + \frac{\partial \sigma}{\partial z} \right) \right) \]

\[1 \text{ Curvature tensor} \]
\[
W_{\text{ext,1}} = \int_{\Omega} \left(\int_{0}^{w} F_{\text{ext}} \, dw \right) \, d\Omega = \int_{\Omega} \left(\int_{0}^{w} \frac{\varepsilon v^2}{2(d-w)^2} \, dw \right) \, d\Omega
\]
(16)

که در آن \(\Omega \) طبق پیشنهاد انتکسیون است. قابل توجه است که با توجه به عدم انحراف نقاط میکروسکوپی در حین تغییر شکل بر اساس فرضیه کریستکف، جابجایی این سطح با ناحیه میکروسکوپی یکسان است. \(\text{A} \) نیز می‌توان در رابطه (16) قابل توجه نمود که اگر این کار آن باشد، اگر این کار آهنین باشد

اکتریونیکی می‌باشد

اثری جنبه‌ی میکروسکوپی را نیز می‌توان طبق رابطه (17) محاسبه نمود

\[
K = \int \frac{b^4}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)^2 \, da
\]

که در آن \(b \) طبق دو رابطه (18) (19) (20) نیز می‌توان بدست آورد

\[
\delta K = \delta U + \delta W_{\text{ext,1}} + \delta W_{\text{ext,2}}
\]

(20)

با جداگردی از عیارهای کریستکف، جابجایی و جابجایی انتگرال شده روی میکروسکوپی توسط میکروسکوپی برای انتگرال‌های انتگرال‌الکترونیکی در رابطه (21) باید استفاده شود

\[
\int \left(\frac{1}{2} k \delta V \right) \, d\Omega + \int \left(\frac{1}{2} \frac{\partial w}{\partial x} \right)^2 \, da + \int \left(\frac{1}{2} \frac{\partial w}{\partial y} \right)^2 \, da
\]

(21)

که در آن \(k \) طبق پیشنهاد نهایی قابل توجه است که با توجه به پیشنهاد میکروسکوپی برای انتگرال‌های انتگرال‌الکترونیکی در رابطه (17) باید استفاده شود

\[
W_{\text{ext,1}} = \frac{1}{2} \int_{a}^{b} \left(\frac{1}{2} \frac{\partial w}{\partial x} \right)^2 + \frac{1}{2} \frac{\partial w}{\partial y} \, d\Omega
\]

(14)

که در آن \(a \) (15) (17) می‌باشد

\[
\nu_x = \frac{E}{1-v^2} \nu_x + \nu_y, \quad \nu_y = \frac{E}{1-v^2} \nu_x + \nu_y, \quad \nu_x = \frac{E}{1-v^2} \nu_x + \nu_y, \quad \nu_y = \frac{E}{1-v^2} \nu_x + \nu_y
\]

(10)

\[
\sigma_x = \frac{E}{1-v^2} \sigma_x + \frac{vE}{1-v^2} \sigma_y, \quad \sigma_y = \frac{E}{1-v^2} \sigma_x + \frac{vE}{1-v^2} \sigma_y
\]

(11)

\[
\begin{align*}
\tau_{xy} &= \frac{E}{2(1+v)} \tau_{xy} \\
\mu_x &= 2\mu_x, \quad \mu_y &= 2\mu_y, \quad m_{xy} &= 2m_{xy}
\end{align*}
\]

(12)

\[
E = \frac{\mu(3\lambda+2\mu)+\lambda}{(3\lambda+2\mu)} - \frac{3\lambda}{2(\lambda+\mu)}
\]

(13)

\[
\begin{align*}
F_{\text{es}} &= \frac{\varepsilon v^2}{2(d-w)^2} \\
F_{\text{es}} &= \frac{\varepsilon v^2}{2(d-w)^2}
\end{align*}
\]

(7)

\[\begin{align*}
\gamma &= 4.7300, \quad \beta = 0.9825 \\
\lambda &= 0.3965
\end{align*} \]

قبل توجه این کم‌نماده‌ها به رابطه (24), به مدت سفر تا در واقع این هستند. حالت این مقدارهای به رابطه (24) دسته‌بندی شده‌اند. لازم به ذکر است که در این نسخه‌های بایناری‌های بی‌روشات مورد بررسی قرار گرفته، نشان داده شده است، در نظر گرفته شده.

\[\begin{align*}
\mathbf{A} &= \begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix}
\epsilon & \zeta \\
\eta & \xi
\end{pmatrix}
\end{align*} \]

دسته‌بندی سیستم به ترتیبی که در رابطه (25) به نشان داده شده، سیستمی به ترتیبی که در این اعداد به نشان داده شده است، به مدت سفر تا در واقع این هستند.

\[\begin{align*}
\mathbf{z} &= \begin{pmatrix}
x \\
y
\end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix}
\mathbf{u} \\
\mathbf{v}
\end{pmatrix}
\end{align*} \]

در هر خطا و مربوط به داده‌های تک سیستم‌ها

\[\begin{align*}
\mathbf{A} &= \begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix}
\epsilon & \zeta \\
\eta & \xi
\end{pmatrix}
\end{align*} \]

و این رابطه نشان‌دهنده که در این خطا و مربوط به داده‌های تک سیستم‌ها

\[\begin{align*}
\mathbf{T} &= \begin{pmatrix}
\mathbf{u} & \mathbf{v}
\end{pmatrix}, \quad \mathbf{N} = \mathbf{B} \mathbf{T}
\end{align*} \]

و این رابطه نشان‌دهنده که در این خطا و مربوط به داده‌های تک سیستم‌ها

\[\begin{align*}
\mathbf{T} &= \begin{pmatrix}
\mathbf{u} & \mathbf{v}
\end{pmatrix}, \quad \mathbf{N} = \mathbf{B} \mathbf{T}
\end{align*} \]

و این رابطه نشان‌دهنده که در این خطا و مربوط به داده‌های تک سیستم‌ها
ترکاری از سطح باقی مانده می‌تواند به تمامی انتهای حاکم بر تمامی میکروصرفهای با صورت رایله

\[
K_i \psi_i - \frac{1}{2} \int \phi / (1 - \psi_i) \frac{\partial^2 \phi}{\partial z^2} \, dz = 0
\]

در نظر گرفته شود.

\[
K_i \psi_i \cos \theta + N(\psi_i) = 0
\]

این مدل را می‌توان رایله (36) با توجه به

\[
K_i \psi_i \cos \theta + N(\psi_i) = 0
\]

که در آن طبق رابطه (36)
به‌پایه‌ی یافته‌های کنونی به‌مدت تعیین شده از توری کلاسیک، از ضریب میکروضایش قابل نیز توسط تئوری‌های متعادل گزارش شده بود.

هم‌طور که رابطه (44) نشان می‌دهد، میکروسکوپی به سیستم وارد شده این نسبت (عمیق‌تر) منظری میکروضایش مستقل نمی‌باشد از توری میکروسکوپی با ضریب 0.3 در شکل 3 بررسی شده است.

بر اساس نتایج نشان داده شده در شکل 3 مشاهده می‌گردد که اثر نیروهای میکروضایش از گریز بیشتر است. این نتایج به‌طور مستقیم از تغییرات توزیع تریکالسیک در اثر تغییرات تریکالسیک و تریکالسیک در میکروسکوپی مستقل نمی‌باشد.

شایان می‌باشد که بسیاری از مایعات میکروسکوپی با ساختار مایعات مختلف از دو تایی شده و در نتیجه مشترک توانایی رفت‌وآمد زیستگر کار روش [34] همچنین اخلاط یکسان و همکاری می‌باشد. این مقاله که از شکل 2 مشاهده می‌گردد، استفاده از توری کنی به‌پایه‌ی نتایج شکل 3 (32) و (34) بصورت رابطه (44) اجرا شده.

(46) شکل 3 از نیروهای میکروضایش بر روی نسبت 0.3 و 0.7 محور اکسیژن آلماشته در دو جهته x و y برای دانستن 0.3. در شکل 3 نیروهای محوری تا پایه‌ی تئوری کلاسیک است.

CT 127 - بررسی اثر اندازه بار فرکانس پایه میکروضایش تحت نسبت فرکانس پایه میکروضایش تحت محاسبه‌ای شده با تقریب بهبود یافته کنونی به‌مدت تعیین شده از توری کلاسیک طبق رابطه (44) و (45) باصهر.

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$

MST $\left(h / l \right)^2$ $\left(h / l \right)^2$

CT $\left(h / l \right)^2$ $\left(h / l \right)^2$
الکتریکی، این نیست دیگر از ضریب منظوری مستقیم نخواهید بود این واکنش از رابطه (24) نیز بدلیل استقرار خیز اساسی (کتکتکت) به غیر از منظوری، قابل استنباط است همانطور که جدول‌های 3 و 4 نشان می‌دهند، در نظر گرفتن اثرات اندازه تأثیر ارتفاعات آزاد صفحات خیز برای انتخاب اثرات اصلاح پتانسیل الکتریکی، از صفحات تحت ضروری است.

جدول 3 اثر اندازه بر نسبت $\beta = \frac{a}{b}$ برای میکروسطح الکتریکی خیز

<table>
<thead>
<tr>
<th>پارامتر افزایش</th>
<th>$\beta = 12$</th>
<th>$\beta = 9$</th>
<th>$\beta = 6$</th>
<th>$\beta = 3$</th>
<th>$\beta = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h / l = 0.5$</td>
<td>54578</td>
<td>49548</td>
<td>45370</td>
<td>43486</td>
<td>42190</td>
</tr>
<tr>
<td>29707</td>
<td>24915</td>
<td>23413</td>
<td>22804</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17746</td>
<td>16742</td>
<td>14978</td>
<td>14257</td>
<td>14313</td>
<td></td>
</tr>
<tr>
<td>12198</td>
<td>11136</td>
<td>10665</td>
<td>10663</td>
<td>10807</td>
<td></td>
</tr>
<tr>
<td>1/0563</td>
<td>1/0316</td>
<td>1/0251</td>
<td>1/0223</td>
<td>1/0168</td>
<td></td>
</tr>
<tr>
<td>1/0261</td>
<td>1/0142</td>
<td>1/0113</td>
<td>1/0100</td>
<td>1/0100</td>
<td></td>
</tr>
<tr>
<td>1/0149</td>
<td>1/0081</td>
<td>1/0063</td>
<td>1/0056</td>
<td>1/0052</td>
<td></td>
</tr>
<tr>
<td>1/0097</td>
<td>1/0052</td>
<td>1/0041</td>
<td>1/0036</td>
<td>1/0034</td>
<td></td>
</tr>
<tr>
<td>1/0067</td>
<td>1/0038</td>
<td>1/0028</td>
<td>1/0025</td>
<td>1/0023</td>
<td></td>
</tr>
</tbody>
</table>

شکل 4 اثر ضریب منظوری بر روی نسبت β برای یک میکروسطح با نسبت $N_1 = N_2 = N_3 = 4$ تحت نسبتهای محوری (الف) $v = 0.3$ و (ی) $v = 0.5$.

شکل 5 تغییرات فراکسپایهای منظوری میکروسطح با حسب تغییرات انتخاب پتانسیل الکتریکی در ارتفاع و نسبت β تحت اعمال $\beta = \frac{a}{b}$ یک افزایش ارتفاع خیز می‌دهد. می‌شود این فراکسپایه با افزایش انتخاب پتانسیل الکتریکی کاهش پیدا کند و زمانی که انتخاب ایالتی ایالتی و انتخاب که باعث رشد صرف می‌شود بر اساس نتایج شکل 5 می‌شود که در نظر گرفتن اثرات انتخاب آزاد صفحات الکتریکی کاهش تحت اعمال ولتاژ الکتریکی خیز برآوردگر از صفحات تحت ضروری است. محوری به اعمال انتخاب پتانسیل الکتریکی قابلیت بین نتایج تئوری کلاسیک و نتایج بهبود یافته‌ی نش کوپل افرازین می‌پدید.

جدول‌های 3 و 4 اثر اندازه بر نسبت $\beta = \frac{a}{b}$ و $\beta = \frac{a}{b} = 0.5$ و $\beta = \frac{a}{b} = 0.1$.

[37] P. C. P. Chao, C. W. Chiu, T. H. Liu, DC dynamic pull-in predictions for a
generalized clamped-clamped microbeam based on a continuous model
and bifurcation analysis, J. Micromech. Microeng., Vol. 18, pp. 115008,
2008.

[38] H. Reddy, Theory and Analysis of Elastic Plates and Shells. 2nd ed.,

[40] J. Qian, C. Liu, D. C. Zhang, Y. P. Zhao, Residual stresses in micro-electro-

[41] E. B. Magrab, Vibrations of Elastic Systems with Applications to MEMS and

Vibration of a Clamped Nanobeam in Presence of the Casimir Force, Int. J.

clamped nanobeam in presence of the van der Waals attraction, Appl.

[46] A. R. Askari, Static and Dynamic Analysis of Nano/Micro Beams Actuated
by DC Voltage in presence of the van der Waals Force MS Thesis,
Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad,
Iran, 2013. (in Persian)

[47] J. F. Arenas, On the vibration analysis of rectangular clamped plates
using the virtual work principle, J. Sound Vib., Vol. 266, pp. 912-918,
2003.

[48] H. A. C. Tilman, R. Legtenberg, Electrostatically driven vacuum-
encapsulated poly silicon resonators - part II: theory and performance,

[49] R. C. Batra, M. Porfiri, D. Spinnello, Reduced-order models for
microelectromechanical rectangular and circular plates incorporating

[50] R. C. Batra, M. Porfiri, D. Spinnello, Vibrations and pull-in instabilities of
microelectromechanical von Kármán elliptic plates incorporating the

pull-in analysis of microcantilevers based on the modified couple stress

[52] M. Rahaeifard, M. H. Kahrobaiany, M. T. Ahmadian, K. Firoozbakhti,
Size-dependent pull in phenomena in nonlinear microbridges, Int. J. Eng.

[53] S. Kong, Size effect on pull-in behavior of electrostatically actuated

[54] J. Zhang, Y. Fu, Pull-in analysis of electrical actuated viscoelastic
microbeams based on a modified couple stress theory, Meccanica, Vol.

[55] Y. Tadi Beni, I. Karimipour, Static pull-in instability analysis of beam
type NEMS under molecular force using strain gradient theory, J.

[56] M. Baghni, Analytical study on size-dependent static pull-in voltage of
microcantilevers using the modified couple stress theory, International

[57] O. François, I. Dufour, Normalized abscissas for the global behavior of
diaphragms: pneumatic, electrostatic, piezoelectric or electromagnetic

[58] R. C. Batra, M. Porfiri, D. Spinnello, Review of modeling electrostatically
actuated microelectromechanical systems, Smart Mater. Struct., Vol. 16,

[59] P. C. P. Chao, C. W. C. Hsu, C. Y. Tsai, A novel method to predict the pull-in
voltage in a closed form for micro-plates actuated by a distributed