Investigation of MHD nano-fluid flow over a stretching surface with velocity slip and convective surface boundary conditions

Navid Freidoonimehr, Asghar Baradaran Rahimi

Department of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
* P.O.B. 9177948974 Mashhad, Iran, rahimiab@um.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 20 November 2014
Accepted 03 January 2015
Available Online 04 February 2015

Keywords:
MHD
Nano-fluid
Velocity slip
Convective boundary condition
Optimal HA

ABSTRACT

The present article provides an analytical investigation of the fluid flow and heat and mass transfer for the steady laminar MHD three-dimensional nano-fluid flow over a bi-directional stretching sheet with convective surface boundary condition using Optimal Homotopy analysis method (OHAM). In contrast to the conventional no-slip condition at the surface, Navier’s slip condition has been applied. This paper contains two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of Brownian diffusion and thermophoresis simultaneously. The governing partial differential equations (PDEs) are transformed into highly nonlinear coupled ordinary differential equations (ODEs) consisting of the momentum, energy and concentration equations via appropriate similarity transformations. The current OHAM solution demonstrates very good correlation with those of the previously published studies in the special cases. The influences of different flow physical parameters on all fluid velocity components, temperature distribution and concentration as well as the skin friction coefficients in x and y directions, local Nusselt number and local Sherwood number are tabulated graphically and discussed in detail. This study indicates that nano-particles in the base fluid offer potential in increasing the convective heat transfer performance of various liquids. The results show that wall temperature gradient decreases with an increase in thermophoresis parameter or a decrease in Brownian motion parameter. Further, local Sherwood number is inversely proportional to the thermophoresis parameter and also directly proportional to the Brownian motion parameter.

Please cite this article using:
جرانی در تراز معکوس که تابعی از سطوح انتقال حرارت می‌باشد، با کاهش اندازه حرارت افزایش می‌یابد.

چون این آماده‌کننده از این نوع حرارت در آزمایشگاه‌های می‌آورید و

آماده‌کننده سیاسی از تراز در نمای می‌باشد.

اندازه حرارت حرارت و فیزیولوژی در تنگی آزمایشگاه می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

مانند اندازه حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.

در مکلام‌هایی از تراز حرارت حرارت و فیزیولوژی مترکی می‌باشد.

در منطقه انتقال حرارت از تراز حرارت تا نمای می‌باشد.
دریچه جریان ناپایدار بر روی صفحه گسترش یافته در حضور میدان مقاومتی با شرایط مرزی سرعت ناپایدار و همگنی سطحی

\[
\begin{align*}
\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} &= 0, \\
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} &= 0, \\
\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} &= 0
\end{align*}
\]
شکل 1- پیکردن جزین نانویسی بر روی صفحه گسترش بازه و مختصات هندسی سلول

این صفحه نسخه PDF درج شده است و ممکن است دارای کیفیت نیازمند اصلاح باشد.

شکل 2- شرط سرعت لغزش در جهت X

\[v = v_y(y') + \frac{C_y}{C_x} \]

شکل 3- شرط مرزی همصرف سطحی

\[-k \frac{C_f}{T_f} = h \frac{T}{f(T) - T_c} \]

\[C_{fx} = \frac{\tau_{uw}}{\rho u_x^2 x q_w} \quad C_{fy} = \frac{\tau_{uw}}{\rho u_y^2 y q_m} \quad N_u = k \left(\tau_{uw} - \tau_{uy} \right) \quad \frac{q_m}{k} = \frac{x q_m}{x q_m} \]

\[\tau_{uw} = k \left(\frac{\partial u}{\partial x} \right) \quad \tau_{uy} = \frac{\partial u}{\partial y} \quad q_w = -k \left(\frac{\partial T}{\partial x} \right) \quad q_m = -D \left(\frac{\partial C}{\partial x} \right) \]

\[C_{fx} R_e_{\alpha}^{1/2} = f' \quad C_{fy} R_e_{\alpha}^{1/2} = g' \quad N_u R_e_{\alpha}^{1/2} = \phi' \]

که در آن ان \(R_e_{\alpha} \) عدد ریوند محدودیت می‌باشد \(\text{_Re} = u_w x / v \) \((25)\)

1- مسئله خطا کمی فضای خاک (24) را دارایی نمایند

\[L_f = \frac{\partial^2 f}{\partial y^2} - f \quad L_g = \frac{\partial^2 g}{\partial y^2} - g \]

\[L_\theta = \frac{\partial^2 \theta}{\partial y^2} \]

\[\text{این روش آنالیز هموتوپی با استفاده از مسئله‌های مناسب برای مقایسه با مدل‌های اپتی و حل شده‌اند. مسئله‌ای که در آن (10-1) تابیت‌های بیشتر بین می‌تازند، سطح ممکن تغییر مثلث می‌شود. بر اثر این جریان، \(C_i \) از (11-1) با استفاده از مسئله‌های مناسب، سطح تغییر مثلث می‌شود.}

\[\left(1 - q \right) L_f \left[f \left(\eta; q \right) - f_0 \left(\eta \right) \right] \]

\[q h_f N_f \left[f \left(\eta; q \right) - \tilde{\eta} \left(\eta; q \right) \right] \]

1- مسئله خطا کمی فضای شرکت (24) را دارایی نمایند

\[C_{fx} = \frac{\tau_{uw}}{\rho u_x^2 x q_w} \quad C_{fy} = \frac{\tau_{uw}}{\rho u_y^2 y q_m} \quad N_u = k \left(\tau_{uw} - \tau_{uy} \right) \quad \frac{q_m}{k} = \frac{x q_m}{x q_m} \]

1- مسئله خطا کمی فضای شرکت (24) را دارایی نمایند

\[\left(1 - q \right) L_f \left[f \left(\eta; q \right) - f_0 \left(\eta \right) \right] \]

\[q h_f N_f \left[f \left(\eta; q \right) - \tilde{\eta} \left(\eta; q \right) \right] \]

1- مسئله خطا کمی فضای شرکت (24) را دارایی نمایند

\[\left(1 - q \right) L_f \left[f \left(\eta; q \right) - f_0 \left(\eta \right) \right] \]

\[q h_f N_f \left[f \left(\eta; q \right) - \tilde{\eta} \left(\eta; q \right) \right] \]

1- مسئله خطا کمی فضای شرکت (24) را دارایی نمایند

\[\left(1 - q \right) L_f \left[f \left(\eta; q \right) - f_0 \left(\eta \right) \right] \]

\[q h_f N_f \left[f \left(\eta; q \right) - \tilde{\eta} \left(\eta; q \right) \right] \]
\[f(\eta) = f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta) \]
\[g(\eta) = g_0(\eta) + \sum_{m=1}^{\infty} g_m(\eta) \]
\[\theta(\eta) = \theta_0(\eta) + \sum_{m=1}^{\infty} \theta_m(\eta) \]
\[\phi(\eta) = \phi_0(\eta) + \sum_{m=1}^{\infty} \phi_m(\eta) \]

\[L_1[f_m(\eta)] - \lambda_m g_m(\eta) = f_m(\eta) \]
\[L_0[g_m(\eta)] - \lambda_m \theta_m(\eta) = g_m(\eta) \]
\[L_0[\theta_m(\eta)] - \lambda_m \phi_m(\eta) = \theta_m(\eta) \]

\[\frac{\partial^2 f_m(\eta)}{\partial \eta^2} = -M \frac{\partial f_m(\eta)}{\partial \eta} + \sum_{j=1}^{m-1} \left(\frac{f_j(\eta) \partial^2 f_{m-j-1}(\eta)}{\partial \eta^2} + g_j(\eta) \frac{\partial^2 f_{m-j-1}(\eta)}{\partial \eta^2} \right) \]

\[\frac{\partial^2 g_m(\eta)}{\partial \eta^2} = -M \frac{\partial g_m(\eta)}{\partial \eta} + \sum_{j=1}^{m-1} \left(\frac{f_j(\eta) \partial^2 g_{m-j-1}(\eta)}{\partial \eta^2} + g_j(\eta) \frac{\partial^2 g_{m-j-1}(\eta)}{\partial \eta^2} \right) \]

\[\frac{\partial^2 \theta_m(\eta)}{\partial \eta^2} = -M \frac{\partial \theta_m(\eta)}{\partial \eta} + \sum_{j=1}^{m-1} \left(\frac{f_j(\eta) \partial^2 \theta_{m-j-1}(\eta)}{\partial \eta^2} + g_j(\eta) \frac{\partial^2 \theta_{m-j-1}(\eta)}{\partial \eta^2} + \phi_j(\eta) \frac{\partial^2 \theta_{m-j-1}(\eta)}{\partial \eta^2} \right) \]

\[\frac{\partial^2 \phi_m(\eta)}{\partial \eta^2} = -M \frac{\partial \phi_m(\eta)}{\partial \eta} + \sum_{j=1}^{m-1} \left(\frac{f_j(\eta) \partial^2 \phi_{m-j-1}(\eta)}{\partial \eta^2} + g_j(\eta) \frac{\partial^2 \phi_{m-j-1}(\eta)}{\partial \eta^2} + \phi_j(\eta) \frac{\partial^2 \phi_{m-j-1}(\eta)}{\partial \eta^2} \right) \]

\[\chi_m = \begin{cases} 0 & m \leq 1 \\ 1 & m > 1 \end{cases} \]

\[f(\eta, q) = f_0(\eta, q) + \sum_{m=1}^{\infty} f_m(\eta, q) \]
\[g(\eta, q) = g_0(\eta, q) + \sum_{m=1}^{\infty} g_m(\eta, q) \]
\[\theta(\eta, q) = \theta_0(\eta, q) + \sum_{m=1}^{\infty} \theta_m(\eta, q) \]
\[\phi(\eta, q) = \phi_0(\eta, q) + \sum_{m=1}^{\infty} \phi_m(\eta, q) \]

\[\lambda_0 = \frac{\partial q g(\eta, q)}{\partial \eta} + \sum_{m=1}^{\infty} \lambda_m \theta_m(\eta, q) \]

\[\frac{\partial \lambda_m(\eta, q)}{\partial \eta} = \sum_{j=1}^{m-1} \left(f_j(\eta, q) \frac{\partial^2 \lambda_{m-j-1}(\eta, q)}{\partial \eta^2} + g_j(\eta, q) \frac{\partial^2 \lambda_{m-j-1}(\eta, q)}{\partial \eta^2} + \phi_j(\eta, q) \frac{\partial^2 \lambda_{m-j-1}(\eta, q)}{\partial \eta^2} \right) \]

\[\phi(\eta, q) = \phi_0(\eta, q) + \sum_{m=1}^{\infty} \phi_m(\eta, q) \]

\[f(\eta, q) = f_0(\eta, q) + \sum_{m=1}^{\infty} f_m(\eta, q) \]

\[g(\eta, q) = g_0(\eta, q) + \sum_{m=1}^{\infty} g_m(\eta, q) \]

\[\theta(\eta, q) = \theta_0(\eta, q) + \sum_{m=1}^{\infty} \theta_m(\eta, q) \]

\[\phi(\eta, q) = \phi_0(\eta, q) + \sum_{m=1}^{\infty} \phi_m(\eta, q) \]

\[f_m(\eta, q) = f_m(\eta) + C_1 + C_2 e^{-\eta} + C_3 e^{-2\eta} \]

\[g_m(\eta, q) = g_m(\eta) + C_4 + C_5 e^{\eta} + C_6 e^{2\eta} \]

\[\theta_m(\eta, q) = \theta_m(\eta) + C_7 e^{\eta} + C_8 e^{2\eta} \]

\[\phi_m(\eta, q) = \phi_m(\eta) + C_9 e^{\eta} + C_{10} e^{2\eta} \]

\[f(\eta, q) = f\big(\eta\big) + f\big(\eta\big) f\big(\eta\big) \]
جمله 2 مقدار مربع خطا متوسط به ازای تقریب‌های مختلف

جلوه 3 مقدار مربع خطا متوسط به ازای تقریب‌های مختلف کشش (λ) در

جلوه 4 مقدار مربع خطا متوسط به ازای تقریب‌های مختلف کشش (λ) در

بحث و نتایج

جدول 1 مقایسه بهینه پارامترهای کنترل همگرایی به ازای تقریب‌های مختلف

| کشش (λ) | جهت | مقدار مربع خطا متوسط
| 0 | 0 | 0.194564
| 0.25 | 0.194564
| 0.5 | 0.194564
| 0.75 | 0.194564
| 1 | 0.194564

در رابطه فوق می‌توان گفت که در مقدار مربع خطا متوسط به ازای تقریب‌های مختلف کشش (λ) در

کشش (λ) و بهینه مقدار مربع خطا متوسط به ازای تقریب‌های مختلف کشش (λ) در

جدول 2 مقایسه نتایج (0) برای مقادیر مختلف کشش (λ) در

جدول 3 مقایسه نتایج (0) برای مقادیر مختلف کشش (λ) در

جدول 4 مقایسه نتایج (0) برای مقادیر مختلف کشش (λ) در

جدول 5 مقایسه بهینه پارامترهای کنترل همگرایی به ازای تقریب‌های مختلف

| کشش (λ) | جهت | مقدار مربع خطا متوسط
| 0 | 0 | 0.194564
| 0.25 | 0.194564
| 0.5 | 0.194564
| 0.75 | 0.194564
| 1 | 0.194564
الکتروکی به وجدود می‌ایست. این انرژی می‌تواند به کاهش سرعت جریان نزدیک صفحه را در داده‌های بالایی مقادیر سرعت در جهات و در افزایش پانتوم می‌کند. به نیروی لوله‌پیک داده شده در انتظار همچنین توزیع غلظت و ضخامت لاي مزی غلظت افزایش پانتوم معنی‌داری در آزمایش‌های افزایش می‌یابد از این ساله می‌کاهد این که مقداری زیادی از روی داده‌های بازسازی یافت. می‌شود بطور فیزیکی. جریان به افزایشی باعث از گسترش حالت دارد در سالی می‌شود. این منحنی داده که به مقدار معنی‌دار خواهد که به افزایش باعث از گسترش حالت دارد نشان می‌دهد با شدت مکانیکی این که به مقدار معنی‌دار خواهد که به افزایش باعث از گسترش حالت دارد نشان می‌دهد.

3. توزیع دما

4. مدل جریان بازسازی (Nb) و پارامتر انتشار حالت‌های اولیه توزیع دما و غلظت می‌باشد. افزایش پانتوم حالت‌های اولیه توزیع دما در سیستم‌های با تغییر خواهد بود با تغییر در زیر بین جریان بر روی صفحه گسترش یافته می‌تواند به کمک مکانیک حالت‌های اولیه خواهد که به افزایش پانتوم باعث خواهد شد.

5. توزیع غلظت

6. با تغییر دما

7. در نهایت سرعت لوله‌پیک می‌باشد نشان می‌دهد تاثیر پارامتر سرعت لزغنشین بر روی نمایشگر مولکول‌های سرعت لزغنشین رها می‌شود.

8. شکل 3 نشان می‌دهد تاثیر پارامتر سرعت لزغنشین بر روی نمایشگر مولکول‌های سرعت لزغنشین رها می‌شود.

9. شکل 8 نشان می‌دهد تاثیر پارامتر نیروی نسبت توزیع دما، سرعت صفحه غلظت می‌باشد.

 bemUN دانشگاه صنعتی نامه‌نگاری در حضور میدان مقاومت نما می‌باشد. شکل 13 نشان می‌دهد این افزایش می‌کاهد در ریزهای غلظتی که به دیده در از این آزمایش سرعت لزغنشین با تغییر در حالت دارد از این آزمایش سرعت لزغنشین با تغییر در حالت دارد.
الف) منحنی سرعت در راستای x

$\gamma = 0.00$
$\gamma = 0.10$
$\gamma = 0.25$
$\gamma = 0.50$
$\gamma = 1.00$

ب) منحنی سرعت در راستای y

$\gamma = 0.00$
$\gamma = 0.10$
$\gamma = 0.25$
$\gamma = 0.50$
$\gamma = 1.00$

ج) توزیع دما

$\gamma = 0.00$
$\gamma = 0.10$
$\gamma = 0.25$
$\gamma = 0.50$
$\gamma = 1.00$

د) توزیع غلظت

$\gamma = 0.00$
$\gamma = 0.10$
$\gamma = 0.25$
$\gamma = 0.50$
$\gamma = 1.00$

شکل 4 تأثیر عدد پرانتل بر توزیع دما به ازای $1 = 1$
$Bi = 0.1$ و $\lambda = 0.5$ $Pr = 0.71$

شکل 5 تأثیر عدد لوئی بر توزیع دما به ازای $1 = 1$
$Bi = 0.1$ و $\lambda = 0.5$ $Pr = 0.71$

شکل 6 تأثیر عدد حرکت پرانتل و عدد لوئی در حالت حرارتی به ازای $1 = 1$
$Bi = 0.1$ و $\lambda = 0.5$ $Pr = 0.71$
مشخص است که افزایش در λ دلالت بر افزایش سرعت صفحه در جهت y بوده و با کاهش آن در جهت x دارای با افزایش مقادیر پارامتر λ نسبت кشش از صفر، سطح جانبی تر هر کت در راستای y خواهد نمود بلکه افزایش مقادیر پارامتر λ نسبت نرخ کشش ضخامت لایه مزی حرارتی را کاهش می‌دهد و اهمیت بانگ کاهش ضخامت لایه مزی غفلت خواهد داشت.

شکل 9 بینانگ تاثیر عدد بیوت (Bi) بر توزیع y و غفلت

یک بیانی مشخص است که حالت دامی دیواره ثابت (θ(0) = 1) با در نظر گرفتن مقادیر برگه عدد بیوت، می‌کند عدد بیوت به سمت یپهیمای، بدست می‌آید مقادیر برگه عدد بیوت منجر به افزایش سرعت انتقال حرارت خواهد شد. این افزایش تر انتقال حرارت منجر به افزایش دما خواهد شد. این افزایش سرعت حرارتی یکان‌های آن حرارتی خواهد شد. شکل دیلای این است که عدد بیوت بطور مستقیم مناسب با ضریب انتقال حرارت مربوط به سیال گرم h (با توجه به رابطه تعریف عدد Bi = h/k) می‌باشد. مقاومت گرمایی در سمت سیال گرم به طور مکانیکی با محدود مناسب با h می‌باشد. لذا با افزایش عدد بیوت، مقاومت انتقال حرارت می‌باید در نتیجه دمای سطح افزایش یافت. نتیجه، بیانی مشخص، توزیع غفلت (φ(η)) با افزایش عدد بیوت افزایش یافته.

ضرایب اصطلاحات، یکی آن در جهت x و y و عدد ناسالی محکی (Sh/Re1/2) و عدد شرودل مولکلی (Nu/Re1/2) برای

الف) توزیع دما

ب) توزیع غفلت

ج) توزیع دما

د) توزیع غفلت

\[Pr = 0.71 \quad Nb = Nt = 0.1 \quad M = 1 = 1 \quad \lambda = 0.5 \quad \varphi = 0.25 \quad Le = 2 \]

شکل 9 تأثیر عدد بیوت به ازای 1

\[\lambda = 0.0, \quad 0.1, \quad 0.3, \quad 0.5, \quad 0.7, \quad 0.9 \]

شکل 8 تأثیر پارامتر λ نسبت نرخ کشش به ازای 1

\[Bi = 0.1, \quad 0.3, \quad 0.5, \quad 0.7, \quad 0.9 \]
گسترده و سبب نمایش پراکندگی, یارای سرعت لنزی, یارای جرک بروز و یارای انتشار حرارت و عدده بی‌یکنی در شکل ۱۰ نشان داده شده است. یارای پراکندگی در جهت x و γ نسبت افزایش بر حسب یارای متناهی و همچنین نسبتی کاهش بر حسب یارای در جرک می‌باشد. اعداد ناسال و شرودی محلی بر حسب یارای متناهی برای مقادیر مختلف یارای جرک بروز و انتشار حرارتی در شکل ۱۱ نشان داده شده است. نتایج نشان می‌دهد که گردانی دمایی دیواره با کاهش یارای حرکت بروز ایجاد حرارتی کاهش می‌یابد، بنابراین باعث کاهش محلی بر حضور مکوس می‌شود با اعداد Nt و Nb مخصوص مناسب با عدد Nt مستقيم متفاوت با عدد Nb می‌باشد. میزان نتیجه عدده شرودی محلی بر حسب یارای سرعت لنزی در مقایسه با تغییرات عدد ناسال محلی پیشرفت بالایی توجه می‌شود. منحنی گردانی در دما و غلط دیواره بر حسب یارای متناهی برای مقادیر مختلف عدد بی‌یکنی در شکل ۱۲ نشان داده شده است. گاه در شرایط ناپایدار حرکتی و غلط دیواره بر ارائه یارای متناهی مقدار دوینده گردانی کاهش می‌یابد. علامت این همان کاهش می‌باشد که مشاهده می‌شود. افزایش عدد بی‌یکنی به افزایش عدد ناسال محلی و همچنین کاهش عدد شرودی محلی کاهش دارد.

شکل ۱۱ تأثیر یارای حرکت بروز و انتشار حرارتی به ارزی یا متفاوت یارای M، Nt و Nb افزایش یافته.

شکل ۱۲ تأثیر عدد بی‌یکنی به ارزی یا متفاوت یارای متناهی و

\[Nb = Nt = \]

نمایشگاه مکاتبه مدیر، خرداد ۱۳۹۴، دوره ۱۵ شماره ۳

