Investigation of effective parameters on darrieus wind turbine efficiency with aerodynamics models

Alireza ArabGolarche1, Mohammad Moghiman1, Seyyed Mohammad Javadi MalAbad2

1 - Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
2 - Department of Mechanical Engineering, Quanch University of Advanced Technology, Quanch, Iran.

ARTICLE INFORMATION

Original Research Paper
Received 02 February 2015
Accepted 24 February 2015
Available Online 04 April 2015

Abstract

Darrieus turbine is a type of vertical axis wind turbine which, unlike it’s simple structure, makes behavior analysis is a hard computational task. Because of the complex flows around the machine, aerodynamic optimization problem still remains an open question. In this paper, a numerical algorithm based on the Double Multiple Stream tube model is used to calculate the effect of the parameters that influence the efficiency of the Darrieus turbine. This method is a semi-empirical method using lift and drag coefficients obtained from experimental data. Comparison between the results of the present study with the experimental measurements shows that although the developed algorithm gives acceptable results, for higher rotational speeds it achieves nominal rotational velocity, and the model accuracy becomes lower. The aim of this paper is to find optimal conditions, parametrically analyze the effect of blade thickness, solidity, Reynolds number, pitch angle and aspect ratio on turbine efficiency and start. The results show that increasing thickness, Reynolds number and solidity cause an increase in the turbine self-start capability. On the other hand, increasing the solidity of the turbine will reduce working range, and increasing the aspect ratio will increase efficiency, especially at the nominal rotational velocity. The results also show that the designed turbine, having variable solidity, can have the benefits of both low and high solidity turbines simultaneously. But manufacturing variable thickness blades does not have proper justification. Limited increase in pitch angle can also have positive effect on efficiency.

Keywords:
Wind Turbine
Darrieus
Section of Blade
Solidity

Please cite this article using:

دعای ساخته شده توسط باتری نوین‌های متعدد در نمایشگاه‌های مختلفی بوده که در مشاهده آن‌ها با جمعیت مردم وارد است. در سطح کشور، متعدد از این ابزارهای جدید در حال آماده‌سازی و ساخت و ساز هستند که با بهبود و بهبود‌بخشی در ساخت و ساز این تجهیزات می‌توانند در نهایت عوامل را بهبود بخشانند.

1. Vertical Axis Wind Turbines
2. Computational Fluid Dynamic (CFD)
3. Vortex Panel Method
4. Blade Element Momentum
5. Single Streamtube Model
6. Multiple Streamtube Model

مطلب اصلی تنظیم‌های نوین‌های باتری در نمایشگاه‌های مختلف یکی از جهت بازدید کاربران بوده‌است. به همراه این ابزارها، متعدد از ابزارهای جدید در حال آماده‌سازی و ساخت و ساز هستند که با بهبود و بهبود‌بخشی در ساخت و ساز این تجهیزات می‌توانند در نهایت عوامل را بهبود بخشانند.

پرسیون مؤثر بر رادیانس نوین‌های باتری در نمایشگاه‌های مختلف به همراه این ابزارها، متعدد از ابزارهای جدید در حال آماده‌سازی و ساخت و ساز هستند که با بهبود و بهبود‌بخشی در ساخت و ساز این تجهیزات می‌توانند در نهایت عوامل را بهبود بخشانند.
\[\lambda = \frac{r_w}{m} \] (10)

\[\sigma = \frac{nC}{r} \] (11)

2 - Tip Speed Ratio (TSR)

3 - Upwind

4 - Downwind

\[V_{rel} = \sqrt{v_1 \cos \theta} + |v_1 \sin \theta - \omega r| \] (13)

\[V_{rel} = \sqrt{v_1^2 + 2L^2 - 2L \sin \theta} \] (12)

\[\alpha = \tan^{-1} \left(\frac{\cos \theta}{\sin \theta - \omega r} \right) \] (14)

\[f_{req} = \frac{v_2^2}{2} \] (15)

\[f_{aero} = \frac{1}{2} f_{req} \] (16)

\[f_{ave} = \frac{1}{2} \left[f_{req} + f_{aero} \right] \] (17)

\[f_{mom} = \pi \cos \theta \cdot 4 \left(1 - b \right) \left(1 - 2a \right) b \] (18)

\[f_{mom} = \pi \cos \theta \cdot 4 \left(1 - b \right) \left(1 - 2a \right) b \] (19)

\[f_{mom} = \pi \cos \theta \cdot 4 \left(1 - b \right) \left(1 - 2a \right) b \] (20)
سرعه گردش اورودیورال مطابق برای نمونه‌هایی که در این مطالعه استفاده شد، از رابطه 21 به دست آمده است:

\[
p = \frac{1}{2} \pi r^2 \left(\frac{n}{r} \right) = \frac{1}{2} \pi r^2 \left(\frac{v_{\text{aero}}}{r} \right)
\]

برای بررسی اثر اورودیورال، از این رابطه، نسبت میانگین نیروی بار بر حجم و نسبت میانگین نیروی بار بر گردش اورودیورال استخراج شد.

\[
C_p = \frac{1}{2} \pi \int_{0}^{\theta} \left(\frac{1}{r} \right) d\theta
\]

یکی از معادلات ساده برای پیش‌بینی استفاده می‌شود که به نمایش آن در شکل 1 در نظر گرفته شده است.

\[
\lambda = \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{r} \sin \theta d\theta = \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{r} \sin \theta d\theta
\]

در این رابطه، \(\lambda\) معادل نسبت میانگین نیروی بار بر حجم برابر با نسبت میانگین نیروی بار بر گردش اورودیورال است.

۱- NACA (National Advisory Committee for Aeronautics)
۲- Dead Band

3. بحث و بررسی نتایج

منافع مزیتی که ضریب بار و پس از آزمایشگاه‌ها برای تامی‌نامه گردش اورودیورال مطابق برای نمونه‌هایی که در این مطالعه استفاده شد، از رابطه 21 به دست آمده است.

\[
p = \frac{1}{2} \pi r^2 \left(\frac{n}{r} \right) = \frac{1}{2} \pi r^2 \left(\frac{v_{\text{aero}}}{r} \right)
\]

برای بررسی اثر اورودیورال، از این رابطه، نسبت میانگین نیروی بار بر حجم و نسبت میانگین نیروی بار بر گردش اورودیورال استخراج شد.

\[
C_p = \frac{1}{2} \pi \int_{0}^{\theta} \left(\frac{1}{r} \right) d\theta
\]

یکی از معادلات ساده برای پیش‌بینی استفاده می‌شود که به نمایش آن در شکل 1 در نظر گرفته شده است.

\[
\lambda = \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{r} \sin \theta d\theta = \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{r} \sin \theta d\theta
\]

در این رابطه، \(\lambda\) معادل نسبت میانگین نیروی بار بر حجم برابر با نسبت میانگین نیروی بار بر گردش اورودیورال است.
برای بررسی اثر اندک رنولدز، نمودار طول نسبی به پرتو ناکا ۰۰۰۵، و صلبیت ۰۰۰۳ در ۴ عدد رنولدز مختلف در شکل ۷ رسم شده است. ملاحظه می‌سازد که افزایش عدد رنولدز، ضریب توان پرتو ناکا به صورت محسوس در تمام باره‌های صلبیت مبنای افزایش می‌یابد. با تغییر عدد رنولدز بر توان، تغییر کاهش می‌یابد. تغییرات عدد رنولدز به میزان قابل مشاهده است. به گونه‌ای که هرچه عدد رنولدز در ۱ کمتر از ۳ بالاتر باشد، به هر طرف افزایش بودن تغییرات کمک بیشتری خواهد داشت. در اینصورت علائم متفاوتی می‌بینی که در صفحه دیگر نشان داده شد. این علائم افزایش سرعت در یک حالت مشاهده شده است. این افزایش سرعت با افزایش عدد رنولدز در ضریب بر و افزایش CONTRIBUTED TO AFTERSKIN DAEWON (deg)

شکل ۶ نمودار طول نسبی به پرتو ناکا

شکل ۷ نمودار صلبیت بر ضریب توان وزن در همان عدد رنولدز متفاوت

شکل ۸ نمودار ضریب بر و ضریب توان در همان عدد رنولدز متفاوت

با این وجود، هر اثر هر عدد رنولدز متفاوت یکی را لازم به داشته باشیم. این مشاهده نشان می‌دهد که با افزایش عدد رنولدز، سطح الکتریکی تغییر می‌کند، که در صفحه دیگر نشان داده شد. این عدد رنولدز با تغییر عدد رنولدز به مرحله‌های مختلفی از افزایش سرعت در یک حالت مشاهده شده است. این عدد رنولدز با افزایش عدد رنولدز به مرحله‌های مختلفی از افزایش سرعت در یک حالت مشاهده شده است. این عدد رنولدز با افزایش عدد رنولدز به مرحله‌های مختلفی از افزایش سرعت در یک حالت مشاهده شده است.
شکل 12 مقایسه ضریب توان نت توربین با پردهای با پردهای بار ضریب منظری به صورت مستقیم توسط تابع C_p در فاصله $0.1 - 0.5$.

ضریب منظری به صورت مستقیم توسط تابع C_p در فاصله $0.1 - 0.5$.

$$AR = \frac{2h}{\pi r} = \frac{2h}{\pi r}$$
(24)

برای بررسی اثر ضریب منظری، میانگین عملکرد توربینی با نکا 0.015 می‌باشد. ملاحظه می‌شود با افزایش ضریب منظری، ضریب توان نت توربین بمبنای هر تامار بهار سطح یاد پا و بهبود صفحه که معادل همان جلو دو برابر است می‌باشد که نزدیک شدن به این حالت، اثر ضریب منظری بر توان نت توربین کاهش می‌یابد. در افزایش ضریب منظری در شکل 12 نت نت توربین کاهش می‌یابد.

شکل 12 نت نت توربین با افزایش ضریب منظری.

شکل 11 نت نت توربین با افزایش ضریب منظری.

شکل 10 نت نت توربین با افزایش ضریب منظری.

شکل 9 نت نت توربین با افزایش ضریب منظری.

شکل 8 نت نت توربین با افزایش ضریب منظری.

شکل 7 نت نت توربین با افزایش ضریب منظری.

شکل 6 نت نت توربین با افزایش ضریب منظری.

شکل 5 نت نت توربین با افزایش ضریب منظری.

شکل 4 نت نت توربین با افزایش ضریب منظری.

شکل 3 نت نت توربین با افزایش ضریب منظری.

شکل 2 نت نت توربین با افزایش ضریب منظری.

شکل 1 نت نت توربین با افزایش ضریب منظری.

ابیهود فرانس جذب را نویسنده این توضیحات شده و بر اساس نتایج شکل 10، می‌توان در توربین منظری به صورت مستقیم توان نت توربین کاهش می‌یابد. به منظور کاهش نت توان توربین، حداکثر مقدار افزایش سطح نیاز به این نتایج داشته باشد.

از دیگر عوامل مؤثر بر راندمان نت توربین ضریب منظری آست.

1. Aspect Ratio
نتیجه‌گیری و جمع‌بندی

این مطالعه یکی از مهم‌ترین اثرات افزایش در درجه حرارت انتقال می‌باشد. مطالعه یکی از مهم‌ترین اثرات افزایش در درجه حرارت انتقال می‌باشد. علاوه بر این، این مطالعه نشان می‌دهد که افزایش در درجه حرارت انتقال می‌باشد.

نمونه‌برداری از بالا بر رشد توربین در دوره‌های مختلف می‌باشد. به طور کلی می‌توان نتایج مطالعه در مورد توربین‌ها و رشد آنان را نشان داد که این تغییرات در درجه حرارت انتقال می‌باشد.

