حل مسائل غیرخطی الاستیک در محدوده تراکم ناپذیری با استفاده از روش تحلیل ایزوئومتریک

Behrooz Hassania, Seyed Mehdi Tavakkoli, Mehdi Ardiani

Solution of nonlinear nearly incompressible hyperelastic problems by isogeometric analysis method

چکیده
در این تحقیق به صورتی بررسی می‌شود چگونگی تحریکهای تراکم ناپذیری نیز معمول‌تر با روش تحلیل ایزوئومتریک مطرح شده است. برنی متغیرین دیسک استفاده از تحقیقات جامعی این شکل از مسائل تراکم ناپذیری در تحلیل استفاده کرده و برای حل این مشابه، در مورد بهترین روش ابزاری استفاده شده است. در این مقاله با توجه به نوعی از نسبت تراکم، استفاده از روش ایزوئومتریک با توجه به سیستم این سوالات به‌طور پیوسته در مرحله اول اندازه‌گیری شده است و در اینجا به عنوان سیستم‌های تراکم ناپذیری در تحقیق بررسی شده است. نتایج بدست آمده با روش ایزوئومتریک نسبت به آزمایش‌های دیگر بهترین باشند.

ABSTRACT
This article is devoted to the derivation of formulation and isogeometric solution of nonlinear nearly incompressible elastic problems, known as nonlinear nearly incompressible hyperelasticity. After problem definition, the governing equations are linearized by employing the Newton-Raphson iteration method. Then, the problem is discretized by using concepts of isogeometric analysis method and its solution algorithm is devised. To demonstrate the performance of the proposed approach, the obtained results are compared with the finite elements solutions. Due to large deformations in this kind of problems, the finite element method requires a relatively large number of elements, as well as the need for remeshing in some problems, that result in a large system of equations with a high computational cost. In the isogeometric analysis method, B-Spline and NURBS (Non-Uniform Rational B-Spline) basis functions provide a good flexibility in modeling of geometry without any need for further remeshing. The examples studied in this article indicate that by using the isogeometric approach good quality results are obtained with a smaller system of equations and less computational cost. Also, influence of different volumetric functions for the nearly incompressible materials is investigated.

M主旨: 1- مقدمه

Solution of nonlinear nearly incompressible hyperelastic problems by isogeometric analysis method

Behrooz Hassania, Seyed Mehdi Tavakkoli, Mehdi Ardiani

1- Department of Mechanical Engineering, Ferdowsi University, Mashhad, Iran.
2- Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran.

Please cite this article using:

References:

1. Hyperelasticity

Keywords:
Isogeometric Analysis
NURBS
Nearly Incompressible Hyperelasticity
Newton-Raphson

ARTICLE INFORMATION

Original Research Paper
Received 08 January 2015
Accepted 27 February 2015
Available Online 29 April 2015

Keywords:
Isogeometric Analysis
NURBS
Nearly Incompressible Hyperelasticity
Newton-Raphson

References:

1. Hyperelasticity

Please cite this article using:
شکل 2-1 اکثر شیوه‌های تحقیقات اولیه با نشان‌دهنده‌های جی‌یو بسیار در مورد آن‌ها مورد استفاده قرار گرفته‌اند. این شیوه‌ها به‌طور کلی کار کردن اندکی از هر ابزار تحلیل پیچیدگی از جهت بررسی مدل‌ها و سیستم‌ها استفاده می‌شود.

1-4. ایجاد یک رابطه بین تنش و تغییرات در مدل اثرات بین‌المللی و تغییرات در طبقه‌بندی و قدرت نشان‌دهنده‌ها در مدل‌ها، به‌طوری‌که تغییرات در سطح آن‌ها علائم‌های مختلفی را قابل بررسی نشان می‌دهد.

شکل 2-2 استخراج و خصوصیت سازی معادلات تبدیل

یکی از معادلات کاربردی 14 برای موارد متابولیک و هیپر‌کاریک در مدل‌ها و موارد با نشان‌دهنده‌های تغییرات در طبقه‌بندی و قدرت نشان‌دهنده‌ها در مدل‌ها، به‌طوری‌که تغییرات در سطح آن‌ها علائم‌های مختلفی را قابل بررسی نشان می‌دهد.

شکل 2-3 استخراج و خصوصیت سازی معادلات تبدیل

یکی از معادلات کاربردی 14 برای موارد متابولیک و هیپر‌کاریک در مدل‌ها و موارد با نشان‌دهنده‌های تغییرات در طبقه‌بندی و قدرت نشان‌دهنده‌ها در مدل‌ها، به‌طوری‌که تغییرات در سطح آن‌ها علائم‌های مختلفی را قابل بررسی نشان می‌دهد.

شکل 2-4 استخراج و خصوصیت سازی معادلات تبدیل

یکی از معادلات کاربردی 14 برای موارد متابولیک و هیپر‌کاریک در مدل‌ها و موارد با نشان‌دهنده‌های تغییرات در طبقه‌بندی و قدرت نشان‌دهنده‌ها در مدل‌ها، به‌طوری‌که تغییرات در سطح آن‌ها علائم‌های مختلفی را قابل بررسی نشان می‌دهد.

شکل 2-5 استخراج و خصوصیت سازی معادلات تبدیل

یکی از معادلات کاربردی 14 برای موارد متابولیک و هیپر‌کاریک در مدل‌ها و موارد با نشان‌دهنده‌های تغییرات در طبقه‌بندی و قدرت نشان‌دهنده‌ها در مدل‌ها، به‌طوری‌که تغییرات در سطح آن‌ها علائم‌های مختلفی را قابل بررسی نشان می‌دهد.

شکل 2-6 استخراج و خصوصیت سازی معادلات تبدیل

یکی از معادلات کاربردی 14 برای موارد متابولیک و هیپر‌کاریک در مدل‌ها و موارد با نشان‌دهنده‌های تغییرات در طبقه‌بندی و قدرت نشان‌دهنده‌ها در مدل‌ها، به‌طوری‌که تغییرات در سطح آن‌ها علائم‌های مختلفی را قابل بررسی نشان می‌دهد.
3- تحلیل اپزوموتوریک در مسائل های برآوراپاسیستیم در محدوده تراکم ناب‌پزشی

اساس تراکم اپزوموتوریک [21] برگرفته از پیشرفت‌های صنعت طراحی با کمک کامپیوتر در صنعت مدل‌سازی هندسی است. مدل‌سازی منحنی سطوح و احجام در این شاخه به وسیله نرم‌افزارهای نرم‌افزارهای CAD باید در این روش از این نظر به روش مدل‌سازی 3D شامل مدل‌سازی علوفه بر روی نرم‌افزاری تری دimenشنال محاسباتی حاکم بر مسئله استفاده می‌شود و با استفاده از آن می‌تواند پیوسته با وسیله این تقاضا تعیین و استفاده آنها در تقاضا ناب‌پزشی جوای مسئله به جای استفاده از روش اجزای محدود، شبکه در روش تناوب محدود 4 مجموعه از نقاط روش‌های بدون منشی با استفاده از راه حل‌های تناوبی در محدوده باید انتخاب شود. روش‌هایی که در جواب خواهش شد نتایج سپری نهایی توسط هیور و گروه تحقیقاتی روی آی نامیت مهندسی با بهره‌گیری از این روش موجود است [21]. همچنین نتایج آن است در مدل‌سازی دیفرانسیل و مدل‌سازی دیفرانسیل معمولی به وسیله حسی و همکاران مورد نظر قرار گرفته است [32,33] است. این روش نزدیک به استفاده از تناوب برآوراپاسیستیم به سرعت روان [18] و [19] مانند شکل 2. قابل تعیین است.

\[
V(\xi, \eta, \zeta) = \sum_{i} \sum_{j} \sum_{k} R_{ijk}(\xi, \eta, \zeta) p_{ijk}
\]

\[
R_{ijk}(\xi, \eta, \zeta) = \sum_{\xi_i} \sum_{\eta_j} \sum_{\zeta_k} N_{i,p_i}(\xi) N_{j,p_j}(\eta) N_{k,p_k}(\zeta) \omega_{i,j,k}
\]

\[
\xi = \{\xi_0, \xi_1, ..., \xi_m\}
\]

\[
N_{i,0}(\xi) = \begin{cases} 1 & \xi_i \leq \xi < \xi_{i+1} \\ 0 & \xi_{i+1} \leq \xi \leq \xi_i \end{cases}
\]

\[
N_{i,p} = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p+1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p}(\xi)
\]

" شکل 2 ترسیم حجم با استفاده از تناوب یابه و نقاط کنترلی [24]

2- Computer Aided Geometry Design (CAGD)
3- Control Point
4- Finite Difference Method (FDM)
5- Mesh Free Method
6- Ordinary Differential Equation
7- Knot Vector
8- Recursive Formulation

1- Body Force
به مرحله نهایی اینکه در محدوده تراکمی باید با استفاده از روش تحلیل ایزوتروپیک برای تعریف بردار گرهی مشخص می‌شود.

با توجه به تعریف بردار گرهی \(\mathbf{F}_i \) در شکل 3، ممکن است باشد \(\mathbf{q} = \left[q_1, q_2, \ldots, q_m \right] \) و \(\mathbf{c} = \left[c_1, c_2, \ldots, c_n \right] \).

در روش ایزوتروپیک، هدف محاسبه معادلات رابطه بین تابع پایه و نقطه کنترلی می‌باشد. این تابع و جهت پایه برای شکل 3 استفاده می‌شود. در روش ایزوتروپیک به دست آمده‌ی کنترلی مطابق با تعریف به شکل 3، محاسبه گرهی می‌باشد. بنابراین با توجه به تعریف هدسهی حاصل خواهد داشت. بنابراین با توجه به تعریف هدسهی حاصل خواهد داشت. بنابراین

\[
X = \sum_{a=1}^{m} R_a(q_{a1}, q_{a2}, q_{a3}) X_{pa}
\]

\[
v = \sum_{a=1}^{m} R_a(q_{a1}, q_{a2}, q_{a3})^T v_{pa}
\]

\[
u = \sum_{a=1}^{m} R_a(q_{a1}, q_{a2}, q_{a3})^T u_{pa}
\]

\[
F = \sum_{a,b} x_{pa} \cdot x_{pb} V_0 R_a \otimes V_0 R_b
\]

\[
C = \sum_{a,b} (x_{pa} \cdot x_{pb}) V_0 R_a \otimes V_0 R_b
\]

\[
d = \frac{1}{2} \sum_{a=1}^{m} \left(v_p \otimes R + R^T \otimes V_p \right)
\]

\[
V_0 R = \frac{\partial R}{\partial X} \cdot \frac{\partial R}{\partial \xi} + \frac{\partial R}{\partial \eta} \cdot \frac{\partial R}{\partial \zeta}
\]

\[
\mathbf{W} = \mathbf{W}(\xi, \eta, \zeta) = 1
\]

\[
\mathbf{W} = \mathbf{W}(\xi, \eta, \zeta) = 1
\]

\[
\mathbf{W} = \mathbf{W}(\xi, \eta, \zeta) = 1
\]
حل مسائل غیرخطی الأستیک در محصول تراکمی با استفاده از روش تحلیل ناحیه‌ای T(33) برای حل بر مبنای روش تدریجی رافسون حاضر می‌شود:

\[F = \sum_{i=1}^{n} A_{F_i} \]

(33)

در روش ایزوترمیک هندسه و حل مسائل در فیزیک توسط مغناطیسی تراکمی و تراکمی تراکمی را بررسی می‌نماییم: یک تایه‌ای با تابع‌های روش با فیزیک در مسائل هندسه به کمک این تکنیک‌ها در زمان‌ها و موقعیت‌ها در سه انتقال از فضای ایزوترمیک به فضای انتکاژی می‌باشد. این تایه‌ای با تابع‌های روش ایزوترمیک در فضای فیزیکی با دو انتقال از فضای انتکاژی به فضای هندسه و سپس به فضای هندسه برقرار می‌نماید. برای تدریجی رافسون دیده شده ماتریسی زاگوری (34 و 35) برای تدریجی به روش تکنیک‌های رافسون و تدریجی (36 و 37).

\[J_1 = \left[\begin{array}{ccc} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{array} \right] \]

(35)

\[J_2 = \left[\begin{array}{ccc} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} & \frac{\partial z}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} & \frac{\partial z}{\partial \eta} \\ \frac{\partial x}{\partial \zeta} & \frac{\partial y}{\partial \zeta} & \frac{\partial z}{\partial \zeta} \end{array} \right] \]

(36)

\[K^{(C)}_{(x,y)} = \bar{K}^{(C)}_{(x,y)} \nabla R_{x} \otimes \nabla R_{y} \]

(31)

به میزان روش تدریجی رافسون حاضر می‌شود.

\[K(x_{j+1}) = R(x_{j}) + u \]

(32)

\[x_{j+1} = x_{j} + u \]

\[F = \sum_{i=1}^{n} A_{F_i} \]

(33)

در روش ایزوترمیک هندسه و حل مسائل در فیزیک توسط مغناطیسی تراکمی و تراکمی تراکمی را بررسی می‌نماییم: یک تایه‌ای با تابع‌های روش با فیزیک در مسائل هندسه به کمک این تکنیک‌ها در زمان‌ها و موقعیت‌ها در سه انتقال از فضای ایزوترمیک به فضای انتکاژی می‌باشد. این تایه‌ای با تابع‌های روش ایزوترمیک در فضای فیزیکی با دو انتقال از فضای انتکاژی به فضای هندسه و سپس به فضای هندسه برقرار می‌نماید. برای تدریجی رافسون دیده شده ماتریسی زاگوری (34 و 35)

\[\xi = \frac{1}{2} \left(\xi_{1} + \xi_{2} \right) \]

(37)

\[\eta = \frac{1}{2} \left(\eta_{1} + \eta_{2} \right) \]

\[\zeta = \frac{1}{2} \left(\zeta_{1} + \zeta_{2} \right) \]

انجام برای حل مسائل هندسه برای حل مسائل غیرخطی الکتریکی در محصول تراکمی با استفاده از روش تحلیل ناحیه‌ای T(33) برای حل بر مبنای روش تدریجی رافسون حاضر می‌شود:

\[\xi = \frac{1}{2} \left(\xi_{1} + \xi_{2} \right) \]

(37)

\[\eta = \frac{1}{2} \left(\eta_{1} + \eta_{2} \right) \]

\[\zeta = \frac{1}{2} \left(\zeta_{1} + \zeta_{2} \right) \]

به میزان روش تدریجی رافسون حاضر می‌شود.

\[J_1 = \left[\begin{array}{ccc} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{array} \right] \]

(35)

\[J_2 = \left[\begin{array}{ccc} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} & \frac{\partial z}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} & \frac{\partial z}{\partial \eta} \\ \frac{\partial x}{\partial \zeta} & \frac{\partial y}{\partial \zeta} & \frac{\partial z}{\partial \zeta} \end{array} \right] \]

(36)

\[K^{(C)}_{(x,y)} = \bar{K}^{(C)}_{(x,y)} \nabla R_{x} \otimes \nabla R_{y} \]

(31)

با مبتنی‌بندی تغییرات حاصله دستگاه معادله، رابطه (32) برای حل بر مبنای روش تدریجی رافسون حاضر می‌شود.

\[K(x_{j+1}) = R(x_{j}) + u \]

(32)

\[x_{j+1} = x_{j} + u \]

\[F = \sum_{i=1}^{n} A_{F_i} \]

(33)

\[\xi = \frac{1}{2} \left(\xi_{1} + \xi_{2} \right) \]

(37)

\[\eta = \frac{1}{2} \left(\eta_{1} + \eta_{2} \right) \]

\[\zeta = \frac{1}{2} \left(\zeta_{1} + \zeta_{2} \right) \]

به میزان روش تدریجی رافسون حاضر می‌شود.

\[J_1 = \left[\begin{array}{ccc} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{array} \right] \]

(35)

\[J_2 = \left[\begin{array}{ccc} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} & \frac{\partial z}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} & \frac{\partial z}{\partial \eta} \\ \frac{\partial x}{\partial \zeta} & \frac{\partial y}{\partial \zeta} & \frac{\partial z}{\partial \zeta} \end{array} \right] \]

(36)

\[K^{(C)}_{(x,y)} = \bar{K}^{(C)}_{(x,y)} \nabla R_{x} \otimes \nabla R_{y} \]

(31)

با مبتنی‌بندی تغییرات حاصله دستگاه معادله، رابطه (32) برای حل بر مبنای روش تدریجی رافسون حاضر می‌شود.

\[K(x_{j+1}) = R(x_{j}) + u \]

(32)

\[x_{j+1} = x_{j} + u \]

\[F = \sum_{i=1}^{n} A_{F_i} \]

(33)
حل مساله غیرخطی اقیانوسی در محدوده نورکننده برای استفاده از روش تحلیل ایزوئوثومتریک

مقادیر خواص مکانیکی مواد و ناحیه ارژی کرنسی تعیینی به قرار

tابل اولیه آن در

شکل 5 قابل مشاهده می‌باشد.

جدول 1 تغییرات حجم آزاد و باینی در روش اجزای محدود و ایزوئوثومتریک

<table>
<thead>
<tr>
<th>حجم باینی</th>
<th>حجم آزاد</th>
<th>روش تحلیل</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.007561</td>
<td>30.000000</td>
<td>روش اجزای محدود</td>
</tr>
<tr>
<td>30.001080</td>
<td>29.999999</td>
<td>روش ایزوئوثومتریک</td>
</tr>
</tbody>
</table>

مقدار اختلاف جایگزین در نقطه عملی بالا نتایی از بار نهایی از رابطه

\[A_{\text{Max}} - A_{\text{Min}} = -(6.79528) + 6.76176 = -0.03352 \]

- مدل سازی نیروی درخشان تحت اثر نیروی کالبدی ورن

- مدل تحلیلی ارائه شده در این مقاله، یک مکعب با طول 15 عرض 2 و ارتفاع واحد می‌باشد. شرایط هندسی، بالکند و نکته‌گاهی در شکل 6 نشان داده

شکل 4(الف) هندسه، شرکت و شرایط مرزی ب) شیب کنترلی X در روش ایزوئوثومتریک

شکل 4(ب) تغییرات حجم آزاد و باینی در روش اجزای محدود و ایزوئوثومتریک

شکل 5(الف) تغییرات حجم آزاد و باینی در روش اجزای محدود و ایزوئوثومتریک

شکل 5(ب) تغییرات حجم آزاد و باینی در روش اجزای محدود و ایزوئوثومتریک

شکل 5(ب) تغییرات حجم آزاد و باینی در روش اجزای محدود و ایزوئوثومتریک

1- Control Net
شده است بارگذاری در 100 مرحله با مقادیر همگراپی به
$\varepsilon = 1 \times 10^{-10}$ به صورت یارباینی بر جسم یا محتویات در روش استفاده شده است به روش اجزای محدود، از
المان هشت گرهی شش و جهی 1 شبکه از گره 2 در انجام گزارش در
هر اجزای از 8 نقطه گویی استفاده شده است که دستگاه معادله ایجادی
جهت حل، ماتریس مربوط به 8235 درایه در هر راستا است است در روش
ایزوترونیک به توابع یا تابع دوباره گزارش به صورت زیر این تاریکه داده نشده.

$\zeta = [0,0,0,0,1,0,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,1,1,1]$
$\eta = [0,0,0,0,0,25,0,5,0,75,1,1,1]$
$
\zeta = [0,0,0,0,5,1,1,1]$
همچنین برای انجام گزارش در هر اجزای گزارش از 64 نقطه گویی
استفاده شده است با استفاده از رابطه

$P = 12 \; ; \; P = 6 \; ; \; P = 4 \; ; \; P_{\text{-total}} = 288$

که دستگاه معادله ایجادی جهت حل، ماتریس مربوط به 864 درایه در
هر راستا می‌باشد تنوع معنی‌دار مختصات نقاط کنترلی در شکل 6- به صورت زیر

$P = \{0,0,0,1,0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,1,1,1\}$
$P = \{0,0,0,0,0,25,0,5,0,75,1,1,1\}$
$P = \{0,0,0,0,5,1,1,1\}$

مقاول‌های خاکی مکانیکی مبادل و تابع آنری کننی تعیینی به قرار زیر

$\rho = 0.05 \; ; \; \mu = 100 \; ; \; \kappa = 100$

$U(J) = 0.5 k(J-1)^2$

نتایج تغییرات حجم مدل تعیینی در جدول 4 و نتایج تحلیلی آن در

شکل 7 قابل مشاهده است.

با توجه به اطمیان سیستم زدیک نتایج این واده شده از 7 نستسم، استفاده
از روش ایزوترونیک غواه بر آنکه فرآیند تولید مش مجدد را تا حد زیاد
کاهش می‌دهد باعث ایجاد دستگاه معادلاتی با حجم محاسباتی کوچکتر

می‌شود.

جدول 2

<table>
<thead>
<tr>
<th>حجم 1</th>
<th>حجم 2</th>
<th>حجم 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>حجم بنایی</td>
<td>3347838</td>
<td>3940664</td>
</tr>
<tr>
<td>حجم اجزای محدود</td>
<td>5000000</td>
<td>3000000</td>
</tr>
<tr>
<td>حجم ایزوترونیک</td>
<td>5000000</td>
<td>3000000</td>
</tr>
</tbody>
</table>

جدول 3

<table>
<thead>
<tr>
<th>حجم 1</th>
<th>حجم 2</th>
<th>حجم 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>حجم بنایی</td>
<td>3347838</td>
<td>3940664</td>
</tr>
<tr>
<td>حجم اجزای محدود</td>
<td>5000000</td>
<td>3000000</td>
</tr>
<tr>
<td>حجم ایزوترونیک</td>
<td>5000000</td>
<td>3000000</td>
</tr>
</tbody>
</table>

$U(J) = 0.5 k(J-1)^2$

$U(J) = 0.5 k(J-1)^2$

1. 8-Noded Trilinear Hexahedron
حل مسئولیت‌های ایستگاه در محدوده‌های تراکم‌بندی برای استفاده از روش تحلیل پیوستگی

5- نتیجه‌گیری

در این تحقیق به فرمول‌بندی و حل مسائل غیر خطی ایستگاه در محدوده تراکم‌بندی که به مسائل همبسته‌ای ریزی‌های تراکم ناهنجاری نیز معرفی، با استفاده از روش تحلیل پیوستگی مقایسه نتایج حاصل با روش اجزای محدود پرداخته شده است. با توجه به تغییرات‌های بزرگ در مسائل غیرخطی ایستگاه، کارگیری روش اجزای محدود علاوه بر ویژگی جواب مسائل به اندازه می‌تواند باعث ایجاد دستگاه‌های جاذب محاسباتی باشد. در برخی از مسائل می‌تواند مجدد اجتناب نایب‌نیز است. در روش پیوستگی، با توجه به استفاده از نوبت پایهای استدی را کلین‌تیکی به‌پایه به‌فراوان تولید مش مجدداً حاصلی رفع مشکل با استفاده از روش این‌جا می‌تواند استدی دستگاه معادلات کوچک و کامل حجم محاسبات دقت بکساند و در قاب‌ها نشان داده شده است. همچنین استفاده از توابع این‌جا کنترل حجم مدل 1 و مدل 2 تأثیر مناسبی بر نتایج نشان نمی‌دهد.

6- فهرست علائم

- نام‌های استادیه‌های ماده‌های لگرگزی
- نام‌های تغییر شکل گربن- کوشنی چی
- نام‌های تغییر شکل گربن- کوشنی راست
- نام‌های تغییرات
- نام‌های کرنش گربن
- بردار نیروهای خارجی
- نام‌های تغییر شکل ماتریس زاگویین
- نسبت تغییرات حجم
- ماتریس ضریب
- تابع پیش‌اسبیلی
- مؤلفه فشار هیدرواستاتیکی
- مؤلفه نقاطی کنترلی

