Title

Tensile characteristic length determination of notched woven composite laminates by means of progressive damage analysis

Authors

Fathollah Taheri-Behroz, Hadi Bakhshan

Department

Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

Article Information

<table>
<thead>
<tr>
<th>Original Research Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received 17 May 2015</td>
</tr>
<tr>
<td>Accepted 26 May 2015</td>
</tr>
<tr>
<td>Available Online 07 July 2015</td>
</tr>
</tbody>
</table>

Keywords:

Woven Composites
Progressive Damage
Failure Criteria
Tensile Characteristic Length

Abstract

The analysis of notched composite parts in a structure due to the existence of high stress concentration and undetermined behavior is an exigent issue. In this research, the progressive damage analysis has been applied to predict the failure of notched woven glass-epoxy composite laminates under tensile loading. Stress analysis and investigation of the effect of the size on it have been performed by the analytical and numerical methods. Developing a UMAT in the ABAQUS finite element package has made the utilization of the 3D progressive damage analysis feasible. Max Stress, Yamsada-Sun and Tsai-Wu failure criteria have been implemented to predict the damage initiation due to the absence of significant failure criteria for woven composites. Instantaneous and recursive property degradation methods have been used to simulate the damage propagation. The tensile characteristic distance has been computed without any experiments. The comparison of stress and failure analysis with experimental results shows good agreement. Finally, using tensile characteristic length obtained by progressive damage method, the possibility of safety factor determination in the composite joints for optimum design has been provided.

References

\[
K^2 = \sigma^2 + \rho^2 - 2\sigma\rho
\]

\[
K_0 = \sqrt{\frac{2Z^2}{(X^2 + Y^2)^2 - Z^2}}
\]

\[
Q = \frac{2Z}{X^2 + Y^2}
\]

\[
Q(x) = \frac{2Z}{X^2 + Y^2}
\]

\[
Q = \frac{2Z}{X^2 + Y^2}
\]

\[\begin{align*}
K^2 &= \sigma^2 + \rho^2 - 2\sigma\rho \\
K_0 &= \sqrt{\frac{2Z^2}{(X^2 + Y^2)^2 - Z^2}} \\
Q &= \frac{2Z}{X^2 + Y^2}
\end{align*}\]
مدل خاولدی: در تحلیل شبیه‌سازی، رابطه بین وضعیت نش و ضربات کریس ساختار در حالت سخت‌سازی کریس برای ماده از تقویت‌پذیری استاتیک خیلی جدید از ایزوتروفی صورت بی‌وین نوشته می‌شود:

\[
\mathbf{\sigma} = \begin{pmatrix}
\sigma_{11} & 0 & 0 \\
0 & \sigma_{22} & 0 \\
0 & 0 & \sigma_{33}
\end{pmatrix}
\] \(\begin{pmatrix}
\xi
\end{pmatrix}
\]

ضرابت ساختاری \(C_0 \) در رابطه (7) با استفاده از تابع‌های ماده استاتیک به صورت روابط (8) می‌باشد:

\[
C_0 = \begin{pmatrix}
1 - V_1 V_2 & V_1 E_1 \\
V_1 E_1 & 1 - V_1 V_3 & V_2 E_2 \\
V_1 E_1 & V_2 E_2 & 1 - V_3 E_3
\end{pmatrix}
\]
\[
\begin{align*}
\{ \sigma_{11} > 0 \rightarrow X = X_r \\
\{ \sigma_{11} < 0 \rightarrow Y = X_c \\
\{ \sigma_{22} > 0 \rightarrow Y = Y_r \\
\{ \sigma_{22} < 0 \rightarrow Y = Y_c
\end{align*}
\]
(9)

\[
I_Y = \max \left(\frac{\sigma_{11}^2}{X}, \frac{\sigma_{12}^2}{Y}, \frac{\sigma_{13}^2}{S} \right) = 1
\]
(11)

\[
\begin{align*}
C_{12}^0 &= C_{21}^0 = (v_{11} + v_{12} - \Delta v_{11})E_{12}^2 \\
C_{13}^0 &= C_{31}^0 = (v_{11} + \Delta v_{11})E_{13}^2, \\
C_{23}^0 &= C_{32}^0 = (v_{22} + \Delta v_{22})E_{23}^2 \\
C_{33}^0 &= C_{33}^0 = G_3 = C_{11}^0
\end{align*}
\]
(8)

* محاسبه شد*
مقدار مبدل گوگولان کاهش خواص برای چندبخشی‌های کامپوزیتی بیش‌تر از سایر قطاع‌های کاهش خواص می‌باشد که بر اساس روشهای مشابه به‌صورت گرفته است. هزینه به کار می‌برد. معادلات تعادلی مبتنی بر شکل‌های سطحی بعد این معادلات به صورت رابطه (18) با یکی از مدل‌ها می‌شود:

\[\phi = F_{1} \sigma_{11} + F_{22} \sigma_{22} + F_{11} \sigma_{33} + F_{12} \sigma_{12} + 2F_{23} \sigma_{23} + 2F_{13} \sigma_{13} + F_{44} \left(\sigma_{11} \right)^{2} + F_{55} \left(\sigma_{22} \right)^{2} + F_{66} \left(\sigma_{33} \right)^{2} \]

(18)

در رابطه (18) مولتی‌های نویسی \(F_{ij} \) نشان دهنده ماتریسی است که به صورت رابطه (19) از مدل را به‌طور مشابه نشان خواهیم داد:

\[F_{1} = \frac{1}{X_{T}} - \frac{1}{X_{C}}; \quad F_{2} = \frac{1}{Y_{T}} - \frac{1}{Y_{C}}; \quad F_{3} = \frac{1}{Z_{T}} - \frac{1}{Z_{C}} \]

\[F_{11} = \frac{1}{X_{T}X_{C}}; \quad F_{22} = \frac{1}{Y_{T}Y_{C}}; \quad F_{33} = \frac{1}{Z_{T}Z_{C}} \]

\[F_{44} = \frac{1}{S_{33}^{2}}; \quad F_{55} = \frac{1}{S_{22}^{2}}; \quad F_{66} = \frac{1}{S_{11}^{2}} \]

\[F_{12} = \frac{1}{2} \sqrt{X_{T}X_{C}Y_{T}Y_{C}}; \quad F_{13} = \frac{1}{2} \sqrt{X_{T}X_{C}Z_{T}Z_{C}} \]

(19)

مقدار عوامل تماسی به‌صورت (20) مشاهده می‌شود:

\[F_{ij}F_{ji} \geq 0 \]

(20)

معنی‌سازی: هر یک از حالت‌های مولتی‌های نویسی \(F_{ij} \) به‌طور مشابه نشان دهنده \(F_{ji} \) را به‌طور مشابه نشان خواهد داد. همچنین این مدل‌ها به‌صورت مشابه نشان دهنده \(F_{ij} \) را به‌طور مشابه نشان خواهد داد.

\[\phi = \phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} + \phi_{5} + \phi_{6} = \sum_{i=1}^{6} \phi_{i} \leq 1 \]

(21)

امبتدایی، مدل‌های کوگولان مشابه‌ترین مدل‌ها به‌صورت مشابه نشان دهنده \(F_{ij} \) را به‌طور مشابه نشان خواهند داد. همچنین این مدل‌ها به‌طور مشابه نشان دهنده \(F_{ij} \) را به‌طور مشابه نشان خواهد داد.

\[\phi = \phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} + \phi_{5} + \phi_{6} = \sum_{i=1}^{6} \phi_{i} \leq 1 \]

(21)

امبتدایی، مدل‌های کوگولان مشابه‌ترین مدل‌ها به‌صورت مشابه نشان دهنده \(F_{ij} \) را به‌طور مشابه نشان خواهد داد. همچنین این مدل‌ها به‌طور مشابه نشان دهنده \(F_{ij} \) را به‌طور مشابه نشان خواهد داد.

\[F_{ij}F_{ji} \geq 0 \]

(20)

معنی‌سازی: هر یک از حالت‌های مولتی‌های نویسی \(F_{ij} \) به‌طور مشابه نشان دهنده \(F_{ji} \) را به‌طور مشابه نشان خواهد داد. همچنین این مدل‌ها به‌طور مشابه نشان دهنده \(F_{ij} \) را به‌طور مشابه نشان خواهد داد.

\[\phi = \phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} + \phi_{5} + \phi_{6} = \sum_{i=1}^{6} \phi_{i} \leq 1 \]

(21)

امبتدایی، مدل‌های کوگولان مشابه‌ترین مدل‌ها به‌صورت مشابه نشان دهنده \(F_{ij} \) را به‌طور مشابه نشان خواهد داد. همچنین این مدل‌ها به‌طور مشابه نشان دهنده \(F_{ij} \) را به‌طور مشابه نشان خواهد داد.

\[\phi = \phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} + \phi_{5} + \phi_{6} = \sum_{i=1}^{6} \phi_{i} \leq 1 \]

(21)
برای محاسبه قطع مدول کششی از اکستسیومتر با طول گیج 50 mm جدول 1 مقدار جهازکشنی شامل در محل سوخت و فاصله دورتر از سوخت و
برای این نمونه کاوش 7.4
و 10 میلیمتر نانه می‌دهد، در این نمونه‌ها نمودار بار برجای
از آرامشی تری کامپوزیت مزاحم غیرخطی نشان می‌یابد، به همراه

جدول 3 نتایج آزمایش کشش

<table>
<thead>
<tr>
<th>F(N)</th>
<th>σx(MPa)</th>
<th>σy(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13431/68</td>
<td>220/8</td>
<td>264/48</td>
</tr>
<tr>
<td>10847/62</td>
<td>178/65</td>
<td>249/32</td>
</tr>
<tr>
<td>8957/52</td>
<td>148/68</td>
<td>248/65</td>
</tr>
</tbody>
</table>

جدول 2 خواص ماده کامپوزیت شیشه/پوکسی

<table>
<thead>
<tr>
<th>E1(GPa)*</th>
<th>E2(GPa)*</th>
<th>E3(GPa)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>202</td>
<td>2</td>
</tr>
<tr>
<td>G12(GPa)</td>
<td>G13(GPa)</td>
<td>G23(GPa)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ν12</td>
<td>ν13</td>
<td>ν23</td>
</tr>
<tr>
<td>0.46</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>X1(MPa)*</td>
<td>X2(MPa)*</td>
<td>X3(MPa)*</td>
</tr>
<tr>
<td>364/3</td>
<td>364/3</td>
<td>364/3</td>
</tr>
<tr>
<td>Y1(MPa)*</td>
<td>Y2(MPa)*</td>
<td>Y3(MPa)*</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>S11(MPa)*</td>
<td>S22(MPa)*</td>
<td>S33(MPa)*</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

* مقدار

1. Extensometer
برای قطر 4 میلی‌متر گل‌گیخوان 2، طبقه‌ی مسکن این امر در حالت‌های محدود مصرف ندارد و مرجع گام‌های نهاد شدن با استفاده از این مقادیر غیر از خرابی همگام می‌گردد.

در تحلیل خرابی پیش‌رونه‌های بارگذاری، بار والاندی و مقادیر بیشتر

نمودار بار - جابجایی می‌باشد.

منشأه می‌شود که معمای مسکن در هنگام کامپوزیت‌های تیجه می‌باشد، اخلاقی‌ترین با استفاده از منابع متاسفی ریتی‌پنی، نمونه می‌باشد.

شعر 6: مورد می‌گونه خرابی منجر به والاندی و بار خرابی متفاوت در نشان می‌باشد. نتایج نمودار از شکل حاصل می‌باشد:

- ممکن است در سه‌پنجه به قطر 10 میلی‌متر دو گل‌گیخوان برای خرابی متفاوت از خرابی در طول مصرف نهاد شود.
- در جهت خرابی محصولاتی به خرابی محصولاتی که از این امر فراخوانده باشد، در هر مسیر رشد قابل ملاحظه‌ای داشته است که این رویداد در سطح می‌باشد. عدم وجود لایه‌ای زیاد دارای امکانات دلایلی در تشخیص و فعالیت می‌باشد.
- نقطه خرابی برای خرابی متفاوت به منظور شده می‌باشد.
- تأثیر بانک بودن کامپوزیت بر استفاده مصرفی 7 میلی‌متر

نکته 3: تغییرات ضریب استحکام با قطر سرای

نکته 4: تغییرات ضریب استحکام با قطر سرای 4 میلی‌متر

نکته 5: نمودار بار - جابجایی برای سرای 7 میلی‌متر

پیش‌بینی این‌که استخفا از منابع متاسفی در به‌وجود آمدن برای پیش‌بینی نشان می‌باشد.

برای دو گل‌گیخوان منشأه که این امر در حالت‌های محدود مصرف ندارد و مرجع گام‌های نهاد شدن با استفاده از این مقادیر غیر از خرابی همگام می‌گردد.

در تحلیل خرابی پیش‌رونه‌های بارگذاری، بار والاندی و مقادیر بیشتر

نمودار بار - جابجایی می‌باشد.

منشأه می‌شود که معمای مسکن در هنگام کامپوزیت‌های تیجه می‌باشد، اخلاقی‌ترین با استفاده از منابع متاسفی ریتی‌پنی، نمونه می‌باشد.

شعر 6: مورد می‌گونه خرابی منجر به والاندی و بار خرابی متفاوت در نشان می‌باشد. نتایج نمودار از شکل حاصل می‌باشد:

- ممکن است در سه‌پنجه به قطر 10 میلی‌متر دو گل‌گیخوان برای خرابی متفاوت از خرابی در طول مصرف نهاد شود.
- در جهت خرابی محصولاتی به خرابی محصولاتی که از این امر فراخوانده باشد، در هر مسیر رشد قابل ملاحظه‌ای داشته است که این رویداد در سطح می‌باشد. عدم وجود لایه‌ای زیاد دارای امکانات دلایلی در تشخیص و فعالیت می‌باشد.
- نقطه خرابی برای خرابی متفاوت به منظور شده می‌باشد.
- تأثیر بانک بودن کامپوزیت بر استفاده مصرفی 7 میلی‌متر

نکته 3: تغییرات ضریب استحکام با قطر سرای

نکته 4: تغییرات ضریب استحکام با قطر سرای 4 میلی‌متر

نکته 5: نمودار بار - جابجایی برای سرای 7 میلی‌متر

پیش‌بینی این‌که استخفا از منابع متاسفی در به‌وجود آمدن برای پیش‌بینی نشان می‌باشد.
کمتری را نموده و در نتیجه به می‌یابد که بزرگ‌تر نمایان سختی ضریب تمرکز تشک، سنجی به طراحی محاسباتی در یک راه.

دکتر ۸ سقطری قابل استفاده که با دو مسیر سای، وی و نشان می‌پردازد. سقطری، را برای هر سطح نمایش می‌دهد. محوریت بیانگ‌گر قابل، مشخصه کشی با ره سطح می‌باشد. مشاهده می‌گردد که راهی بین سطح سرخار با قابل مشخصه کشی خصلت بوده و با افزایش قطر، قابل مشخصه برای افزایش، مشخصه کشی می‌باشد. در نتیجه از روهای این نمودار برای ایجاد نتایج با جنس بکسان. می‌توان مقادیر قابل مشخصه کشی را برای قطع دیگر به دست آورد. این دشواری ره سطح می‌باشد (نمونه نمودار) و جنس بکسان قابل استفاده است.

قابل مشخصه تابعی از ایلیچ، ماه به هندسه نمایش می‌باشد. پس نویس به روشن جامع و دقت برای محاسبه آن می‌یابد. با تعیین قابل مشخصه، سرخار به روز ایجاد سروخ و با مطالعه بیشتر بر روی اثر بهم بر قابل، مشخصه نمودار شکل ۹ اظهار می‌گردد در طراحی اصول هدف اصلی.
تهیه قابل‌سنجش کشفی در جنگل‌های کامپوزیت باقله شده ناجدار با روش خراش برش روغن

![نمودار بیشتر از تعبیر قابل‌سنجش‌کشی در قطعات ناجدار](image)

شکل 7 قابل‌سنجش‌کشی با میزان‌های مختلف برای سوراخ به قطر 4، 7 و 10 میلی‌متر

ضریب افت استحکام محاسبه‌ی می‌شود.

- ضریب افت نقطه‌ای با کمک فاصله‌ی میانشان محاسبه‌ی دارد.
- از نش بیشتر، ضریب افت استحکام مناسب‌تری را پیش‌نهاد.

می‌دهد که بیان نتایج تجربی نداده‌های‌یابش.

شکل 8

برای تیپ بیشتر از استحکام صفحات ناجدار کامپوزیت تحت برداشته‌ای صفحاتی

درصد کاهش‌دهنده نسبت به قطر (w/d) برای میزان‌های مختلف

![نمودار بیشتر از تعبیر قابل‌سنجش‌کشی در قطعات ناجدار](image)

شکل 9 نمودار بیشتر از تعبیر قابل‌سنجش‌کشی در قطعات ناجدار

شکل 8

قابل‌سنجش‌کشی برای میزان‌های مختلف

مساحت کاهش‌دهنده به تیپ طول به دانی نشان‌داده.

- با استفاده از نمودار ضریب افت استحکام در همه‌ی روش‌ها به‌جای لاتینی‌کشی کاهش می‌یابد که این ضعف عدالت لاتینی‌کشی را بیان می‌کند.

- تحلیل می‌شود [ضریب افت استحکام در همه‌ی سرواخ‌های این‌دست] همه‌ی فاصله‌های مبتنی بر منظور تعبیر مقاولات

مهدی ملاکی، مدیر، آموزش و پرورش و هادی پیشانی

شماره 8/15 منبع: مهندسی کالیفرنیا، آموزش و پرورش و هادی پیشانی

368
جدول 4 مقایسه کلی نتایج

<table>
<thead>
<tr>
<th>فشار سوخته</th>
<th>میلی‌متر</th>
<th>7 میلی‌متر</th>
<th>4 میلی‌متر</th>
<th>۱۰ میلی‌متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>نتیجه تجربی</td>
<td>۱/۵۶۷</td>
<td>۰/۴۹۷۸</td>
<td>۰/۴۹۱۱</td>
<td>۰/۴۹۷۸</td>
</tr>
<tr>
<td>استفاده</td>
<td>۱/۷۳۵</td>
<td>۰/۶۸۴۷</td>
<td>۰/۶۸۵۷</td>
<td>۰/۶۸۶۷</td>
</tr>
<tr>
<td>میزان سوخته</td>
<td>۱/۷۲۵</td>
<td>۰/۶۸۴۷</td>
<td>۰/۶۸۵۷</td>
<td>۰/۶۸۶۷</td>
</tr>
<tr>
<td>میزان تش نشینه</td>
<td>۱/۷۳۵</td>
<td>۰/۶۸۴۷</td>
<td>۰/۶۸۵۷</td>
<td>۰/۶۸۶۷</td>
</tr>
</tbody>
</table>

کامپوزیتی ناجادار، مورد استفاده در اتصالات پیشنهاد می‌کند که خلاصه‌ای از روند تحقیق می‌باشد.

9- فهرست علائم

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>مازیس سفتی</td>
<td>ضرب سفتی</td>
<td>قطر (mm)</td>
<td>قطر (mm) بالای شیشه</td>
<td>بالای شیشه</td>
</tr>
</tbody>
</table>

- در بارگیری کارخانه مواد قابل استفاده از کامپوزیت‌ها با فشار خرالف mash می‌باشد.
- در کامپوزیت‌های بالای شیشه برای حساب مواد وادانگی برای شیشه با برای افزایش متفاوت در ذیل‌امد است.
- به گونه ای که در فشار خرالف mash می‌باشد.
- در قالب‌های بارکارد و ناپایدار مواد کارخانه بالای شیشه می‌باشد.
- در قالب‌های بارکارد و ناپایدار مواد کارخانه بالای شیشه می‌باشد.
- در قالب‌های بارکارد و ناپایدار مواد کارخانه بالای شیشه می‌باشد.
- به گونه ای که در قالب‌های بارکارد و ناپایدار مواد کارخانه بالای شیشه می‌باشد.
- در قالب‌های بارکارد و ناپایدار مواد کارخانه بالای شیشه می‌باشد.
- در قالب‌های بارکارد و ناپایدار مواد کارخانه بالای شیشه می‌باشد.
- در قالب‌های بارکارد و ناپایدار مواد کارخانه بالای شیشه می‌باشد.
- در قالب‌های بارکارد و ناپایدار مواد کارخانه بالای شیشه می‌باشد.

شکل ۱۰: گروه‌بندی ریز تحلیل و تعیین ضرب الیافی، ضرب یک ابعادی، ضرب محدوده، ضرب گازی، ضرب سیستمیک

<table>
<thead>
<tr>
<th>علاوه برنامه</th>
<th>s</th>
<th>ξ</th>
<th>η</th>
<th>θ</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>تشین</td>
<td>v</td>
<td>w</td>
<td>r</td>
<td>q</td>
<td>p</td>
</tr>
<tr>
<td>نسب طول</td>
<td>ρ</td>
<td>ω</td>
<td>μ</td>
<td>σ</td>
<td>τ</td>
</tr>
<tr>
<td>کردن</td>
<td>υ</td>
<td>χ</td>
<td>γ</td>
<td>δ</td>
<td>ε</td>
</tr>
<tr>
<td>ضرب پوشاوس</td>
<td>ψ</td>
<td>ϕ</td>
<td>ρ</td>
<td>σ</td>
<td>τ</td>
</tr>
<tr>
<td>ضرب کاهش گری</td>
<td>ρ</td>
<td>ϕ</td>
<td>ρ</td>
<td>σ</td>
<td>τ</td>
</tr>
</tbody>
</table>

شکل ۱۰: گروه‌بندی برای تعیین ضرب الیافی و تعیین ضرب الیافی کامپوزیت‌ها ناجادار