Numerical investigation on the effect of fluid flow between the impeller and the casing on disk friction for a centrifugal pump

Mohammad Amin Dehghani, Amir Farhad Najafi*, Seyed Ahmad Nourbakhsh, Hossein Shokoohmand

School of Mechanical Engineering, University of Tehran, Tehran, Iran
*P.O.B. 11365-4853, Tehran, Iran, afnajafi@ut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 28 December 2015
Accepted 02 March 2016
Available Online 16 April 2016

Keywords:
Centrifugal pump
Hub side chamber
Disk friction
CFD
Turbomachinery

ABSTRACT

Pumps consume about 20% of whole electricity power in the world. Centrifugal pump is one of the most common pumps that works by the transfer of angular momentum to the fluid. The behavior of such a fluid flow in the side chamber may affect the pump performance. The side chamber is defined by the free space between the fixed (pump casing) and the rotating (pump impeller) parts. Steady, fully 3D computations of the Reynolds-averaged Navier-Stokes equations using a commercial CFD code are conducted in order to study the flow field in the whole pump including both side chambers. Numerical results are validated by comparison with the existing experiments. The impact of fluid flow in hub and shroud side chambers with the volute is investigated qualitatively by using 2D stream lines. Evaluation of the empirical equations shows that the frictional torque may be decreased more than 10%, by using the proper gap size. Considering this situation, the changes in the flow pattern and the value of power loss resulting from friction in hub and shroud side chamber is studied. It is shown that the variation in friction depends on the initial flow pattern in cavity. Finally, in order to obtain the relationship between the power loss and the flow rate, nondimensional coefficients are derived. These coefficients show that the change in the power loss due to the volumetric flow rate is the same as its change with the gap changing, but their slopes are not equal.

Please cite this article using:
The speed of the central body is given by equation (1):

$$\beta = \frac{V_0}{r_2} \times \Omega$$

Where r_2 is the distance from the center to the body, V_0 is the speed of the central body, and Ω is the angular velocity.

The distribution of the boundary layer between a fixed and rotating surface is shown in Fig. 2. The boundary layer thickness is given by equation (2):

$$\delta = \frac{Re_{D}}{G} \times r_2$$

where Re_D is the Reynolds number, G is the Grashof number, and r_2 is the distance from the center to the body.

Fig. 2 Distribution of the boundary layer between a fixed and rotating surface

Fig. 1 Different velocity distribution in fluid flow zones between a fixed and a rotating surface

1. Large Eddy Simulation

2. Different velocity distribution in fluid flow zones between a fixed and a rotating surface

3. Large Eddy Simulation
کیکی از کامل ترین فعالیت‌های صورت فشرده در مورد پمپ‌های در دوکتروین گردی از مرکز تحقیقات ویل [4] می‌شود که جریان بین دو صفحه را برای حالات مختلف از جمله صفحات دو، جریان ورودی به دو مسیر مختلف (دراز حذفی و مسیر حذفی) جریان ورودی گرایه می‌شود. تحقیقات صورت فشرده بر روی جریان سال و جریان حرارتی صفحات دو نماینده پوشش دریای زمین می‌باشد. در مورد پمپ‌های دو طرفه سالم نظر به در در که چرخانه، فنر و سیال نبوده می‌باشد. در این جریان برای هر دسته از پلاسمی سال و پریپس پمپ بر سر طبقات آن گزارش‌دهند.

\[\eta = \eta_{vol} \cdot \eta_{sidech} \cdot \eta_{mech} \cdot \eta_{hydro} \]

2- شرکت سرمایه

یکی از کمال‌ترین ویژگی‌های صورت در مورد پمپ‌های در دوکتروین گرایه از مرکز تحقیقات ویل [4] می‌شود که جریان بین دو صفحه را برای حالات مختلف از جمله صفحات دو، جریان ورودی به دو مسیر مختلف (دراز حذفی و مسیر حذفی) جریان ورودی گرایه می‌شود. تحقیقات صورت فشرده بر روی جریان سال و جریان حرارتی صفحات دو نماینده پوشش دریای زمین می‌باشد. در مورد پمپ‌های دو طرفه سالم نظر به در در که چرخانه، فنر و سیال نبوده می‌باشد. در این جریان برای هر دسته از پلاسمی سال و پریپس پمپ بر سر طبقات آن گزارش‌دهند.

\[\eta = \eta_{vol} \cdot \eta_{sidech} \cdot \eta_{mech} \cdot \eta_{hydro} \]

3- تحقیق عدیدی

ابزارهای اتوماتیک که مورد تحقیق عدیدی قرار گرفته‌اند در جدول 1 تا 4 و شکل 4 صورت کامل گزارش شده است. ابتدا پمپ با سیستم شفاف، از دو قسمت تشکیل شده است. در حالی که قسمت پمپ‌های دو طرفه سالم و پریپس پمپ بر سر طبقات آن گزارش‌دهند.

\[\eta = \eta_{vol} \cdot \eta_{sidech} \cdot \eta_{mech} \cdot \eta_{hydro} \]

4- 3- پیشرفت

که مورد تحقیق عدیدی قرار گرفته‌اند در جدول 1 تا 4 و شکل 4 صورت کامل گزارش شده است. ابتدا پمپ با سیستم شفاف، از دو قسمت تشکیل شده است. در حالی که قسمت پمپ‌های دو طرفه سالم و پریپس پمپ بر سر طبقات آن گزارش‌دهند.

\[\eta = \eta_{vol} \cdot \eta_{sidech} \cdot \eta_{mech} \cdot \eta_{hydro} \]
3-2- معادلات حاکم و شرایط مرزی

در حلال چربی سیال از آب به منظور مطالعه این معادلات اینجاستیت چرخش معادلات حاکم بر استفاده در نظر گرفته شده است. از انجا که سیستم اگزوزیگو کروی چربی سیال در داخل پمپ دارای انجا و پریشی می‌باشد، بازی مدل حریران

معادله پیوستی برای سیالات تراکم ناپذیر:

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) &= 0 \\
\rho \frac{DV}{DT} &= \rho f - \nabla P + \mu \nabla^2 \mathbf{V} \\
\end{align*}
\]

\(\rho\) ماده مویمند:

\(f\) بردار سرعت، \(P\) فشار، \(\mathbf{V}\) نیروهای حجمی و \(\mu\) شیرینی این سیالان. وضعیتی می‌باشد.

جدول ۱ اطلاعات ابتدایی پریونه

<table>
<thead>
<tr>
<th>عنوان</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>نام</td>
<td>7</td>
</tr>
<tr>
<td>تعداد هر</td>
<td>عرض پریونه در خروج</td>
</tr>
<tr>
<td>ملي‌متر</td>
<td>14</td>
</tr>
<tr>
<td>عرض پریونه در خروج</td>
<td>130 ملي‌متر</td>
</tr>
</tbody>
</table>

جدول ۲ اطلاعات ابتدایی حلالی پمپ

<table>
<thead>
<tr>
<th>عنوان</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شعل داره نیا</td>
<td>140</td>
</tr>
<tr>
<td>عرض حلالی در شعل می‌باشد</td>
<td>25</td>
</tr>
<tr>
<td>قطر نقطه حلالی</td>
<td>64</td>
</tr>
<tr>
<td>دیون [م]</td>
<td>شعل می‌باشد</td>
</tr>
<tr>
<td>نقطه</td>
<td>دبنزین [م]</td>
</tr>
</tbody>
</table>

جدول ۳ اطلاعات ابتدایی حرگه بین پریونه و پوسه

<table>
<thead>
<tr>
<th>عنوان</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>حفره نسبت نوک</td>
<td>0.058</td>
</tr>
<tr>
<td>حفره نسبت رنگ</td>
<td>0.023</td>
</tr>
</tbody>
</table>

جدول ۴ اطلاعات نطفه مکانیکی پمپ

<table>
<thead>
<tr>
<th>عنوان</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره محل نیم</td>
<td>ناحیه دوم</td>
</tr>
<tr>
<td>حرگه بین پریونه</td>
<td>1</td>
</tr>
<tr>
<td>حرگه بین (پوش)</td>
<td>2</td>
</tr>
<tr>
<td>حرگه بین (پوش)</td>
<td>3</td>
</tr>
<tr>
<td>حرگه بین (پوش)</td>
<td>4</td>
</tr>
<tr>
<td>حرگه بین (پوش)</td>
<td>5</td>
</tr>
</tbody>
</table>

جدول ۵ لیست محل نیم‌های مختلف در حلال عید

<table>
<thead>
<tr>
<th>عنوان</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره محل نیم</td>
<td>ناحیه دوم</td>
</tr>
<tr>
<td>حرگه بین پریونه</td>
<td>1</td>
</tr>
<tr>
<td>حرگه بین (پوش)</td>
<td>2</td>
</tr>
<tr>
<td>حرگه بین (پوش)</td>
<td>3</td>
</tr>
<tr>
<td>حرگه بین (پوش)</td>
<td>4</td>
</tr>
<tr>
<td>حرگه بین (پوش)</td>
<td>5</td>
</tr>
</tbody>
</table>

1- Interfaces
2- ANSYS Workbench
3- Velocity Inlet
4- RAM
5- Intel® Xeon® CPU
6- ANSYS TURBO-GRID
7- ANSYS MESH
8- Circle
9- Symmetric
10- Interface Number
جدول 6. دیه‌های مختلف برای محاسبات عددي

<table>
<thead>
<tr>
<th>عدد مقدار دیه</th>
<th>نوع (مشکی بر ساعت)</th>
<th>درصد دیه نیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>96</td>
</tr>
</tbody>
</table>

یگیرات آن زیادی باید، سطح صفحه محاسبه گردید که 5 تراکم زیاد شیب‌های زندیک به دوچرخه می‌دهد.

برای حساب‌رسی کاراکترترک مکانیک در محاسبات عددی، از دو مدل انتقال استفاده می‌شود که از مدل‌های تک‌دیم، استفاده شده است. کاهش جریان به‌وسیله اعمال هریک از 0.5 تا 0.75 کمتر از تراکم 10 می‌باشد. این مدل نسبت رابطه با 50 بر authorize در هریک از مراحل حل رابطه‌ها به دست می‌آید.

برای اطمینان از دو وسیله چندی عددی به تعداد شیب‌های توزیع سرعت مسابه به دست می‌آید. در حرف سمت راست برای تعداد شیب‌های مختلف در دو پشتیبانی سرعت مدل در تعداد شیب‌های مناسب است. این تراکم از 2.3 تا 3.3 میلیون

(شکل نمودار تعداد شیب‌های 2.3 تا 3.3 میلیون شیب مشاهده است)

برای تحلیل عددی استفاده شده است. از آنجا که افزایش شکاف ده به جز افزایش محسوسی تنش نشانه‌ها و از نسبت توزیع سرعت برای تعداد 5.1 میلیون شیب‌های با 2.3 تا 3.3 میلیون شیب مشاهده شد، حالت توصیف خوب شکاف 6 عددی شد.

![Fig. 6 The tangential velocities in the hub side chamber for different number of mesh elements.](image)

شکل 6 سرعت مسابه در حرف سمت راست برای تعداد شیب‌های مختلف

جدول 7 تعداد شبکه محاسنی در هر ناحیه محاسنی

<table>
<thead>
<tr>
<th>تعداد محاسنی</th>
<th>تعداد شبکه</th>
</tr>
</thead>
<tbody>
<tr>
<td>653800</td>
<td>پروله</td>
</tr>
<tr>
<td>902073</td>
<td>حفر سمت راست</td>
</tr>
<tr>
<td>337773</td>
<td>لوله ورودی</td>
</tr>
<tr>
<td>400425</td>
<td>حفر سمت نوک</td>
</tr>
<tr>
<td>450601</td>
<td>کاهش</td>
</tr>
<tr>
<td>518422</td>
<td>حازوئی</td>
</tr>
<tr>
<td>326094</td>
<td>مجموع</td>
</tr>
</tbody>
</table>

جدول 7 تعداد شبکه محاسنی در هر ناحیه محاسنی

خلاصه در جدول 8 عددی است که ملاحظه می‌شود، تعداد شبکه‌ها مخصوص [4] سبب پدیداری یک بوده و احتمالاً گام تا نقطه هدف در طراحی اولیه می‌باشد. این موجب می‌شود به طرف جریان

می‌باشد. به دست آمده با نتایج عددی و آزمایشگاهی و [4] مقایسه شده است که

![Fig. 5 Cross section and mesh (up: hub side chamber, down: shroud side chamber).](image)

شکل 5 سطح مقطع و شکاف‌نی (پلاس حفر سمت راست؛ پایین: حفر سمت نوک)

\[H = \frac{P_{0, in} - P_{0, out}}{\rho g} \]

(12)

برای اطمینان از سطح حفر عددی حاضر به دست آمده با نتایج عددی و آزمایشگاهی و [4] مقایسه شده است که

![Fig. 5 Cross section and mesh (up: hub side chamber, down: shroud side chamber).](image)

شکل 5 سطح مقطع و شکاف‌نی (پلاس حفر سمت راست؛ پایین: حفر سمت نوک)
Table 8 Comparison of the numerical solution (CFD) and the experimental data for the head of pump.

| مقدار (متر/ثانیه) | نتایج مختلف برای ارتفاع تولیدی پمپ | حالت دیده شده | مقدار انتقال حرارت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.74</td>
<td>توانایی آزمایشگاهی [4]</td>
<td>18.00</td>
<td>19.07</td>
</tr>
<tr>
<td>19.00</td>
<td>حالت دیده شده</td>
<td>18.74</td>
<td>19.07</td>
</tr>
<tr>
<td>19.07</td>
<td>ارتفاع موادول در طراحی</td>
<td>19.00</td>
<td>20.00</td>
</tr>
<tr>
<td>20.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Casing
2. Core Rotation
3. Rotor

Fig. 7 Dimensionless tangential velocity profiles in hub side chamber (rotor to stator) and its comparison with experimental results in three different distances from the rotation axis of the pump.
سرعت دورانی پرتاب می‌شود اما در لابی مزرع تغییر شده را صفحه ثابت
سرعت درونی در هر نقطه می‌شود. سمتین نزدیک به کناره ورودی نمودار سرعت شعاعی برای هر نقطه
اسب نکردن است، اگری چرخش در حفره سمتی است. سمتین نزدیک به کناره سیالی روز صفحه درور
بصورت شعاعی به سمت خارج (به سمت خارجی) و روز صفحه ثابت
شعاعی به سمت داخل (به سمت محور پمپ) است.

تأثیر ریز وجود در خارج روز سایر اجزای پمپ از دیدگاه نظری تغییر
الگوی اصلی چرخش سیال موجودجای است. این شکل 10 تأثیر ورود خروج
سیال موجود در حفره سمت نزدیک چرخش سیال موجود در کاهش. و
حرارت 1 قبل مشاهده است.

همانطور که در شکل 10 دیده می‌شود، این سیال در سرعت شکل شده
در لابی مزرع صفحه درور پس از خروج از حفره، احاطه گذار جریان سیال
موجود در حلالی را شدت بخشیده و باعث و وجود آدمی قطعات اندازه
حرکت و کاهش می‌شود. در شکل 11 سعی شده است که با رسم
خطوط چرخش دویده در حفره سمت نزدیک کیفیت حرکت سیال مورد
بررسی قرار گیرد.

تصویردوبنی خطوط چرخش در شکل 11، سیستم حرکت سیال را نشان
می‌دهد همانطور که ملاحظه می‌شود، سیالی نزدیک به دوبنی ثابت
با تغییر جهت حرکت، به صفحه دوار رفته و از حرکت خارج می‌گردد.

علی‌رغم آنچه که در خطوط چرخش دویده در شکل 11 دیده می‌شود،
پایین توجه داشته که سیال سپس از پیشوند سبیل طولانی تر عرض
حرفت و به حداکثر سیال متصل است. این سمت دوار نمی‌تواند به صفحه
خود اخاده ردیست. بنابراین درک بهتر این موضوع بهتر است در خطوط چرخش
ماشین‌کاری شکل 12 شکل می‌دهد سیال موجود در خروج در
سرداری حرارتی شکل، برای رسیدن از نزدیک به صفحه ثابت تا لایهی

Fig. 8 Comparison of the radial pressure variation among the current study, experimental values and analytical equations

Fig. 9 Velocity direction in boundary layer at shroud side chamber

Fig. 10 Impact of the boundary layers flow in the shroud side chamber on the volute fluid pattern and vortex production

Fig. 11 Shroud surface stream line (Meridional view)

1. Diffuser
2. Stator
3. Volute
4. Spiral
Local Reynolds number (××××) = 4856
Gap size = 788651
Disk friction = 788651

(14)
(15)

Fig. 12 Shroud 3D stream line

شکل 12 خط جریان سعیدی در خروج سمت نوک

یک هندسی مکانیک مدرن، نیرو و پروسه بر اساس اصطکاکی در یک بادگیره از مکانیک

1 Gap size
2 Local Reynolds number
3 Hub side chamber
4 Core rotation
Fig. 13 Experimental values based on the friction coefficient of the local Reynolds [3]

Fig. 14 Power losses due to changes in the gap size

Fig. 15 Experimental values based on the friction coefficient of the local Reynolds [3]
where

\[P = f(\rho, \mu, Q, e) \]

\[\pi_1 = \frac{\rho Q}{\mu e} = \frac{\rho}{\mu} \frac{Q}{e} = \text{Re}_g \]

\[\pi_2 = \frac{\rho_{\infty} Q}{\mu_e e} = \frac{\rho}{\mu_e} \frac{Q}{e} = P^* \]

Taking the above relationship from section 17, the non-dimensional power loss in terms of gap Reynolds number is given by

\[P^* = \frac{P}{\text{Re}_g} \]

The non-dimensional tangential velocity changes with respect to the change in the volumetric flow rate at hub side chamber

\[Q = 0.8 \ Q_{ref} \]

\[0.9 \ Q_{ref} \]

\[1.0 \ Q_{ref} \]

\[1.1 \ Q_{ref} \]

\[1.2 \ Q_{ref} \]

Fig. 15 Dimensionless tangential velocity changes with respect to the change in the volumetric flow rate at hub side chamber

Fig. 16 Dimensionless tangential velocity changes with respect to the change in the volumetric flow rate at shroud side chamber

\[\text{Re}_g \]

\[P^* \]

\[\text{Experimental [3]} \]

\[\text{Hub Domain (CFD)} \]

\[\text{Shroud Domain (CFD)} \]

Fig. 17 the non-dimensional power loss in terms of gap Reynolds number

Fig. 18 tangential velocity changes with respect to the change in the volumetric flow rate at hub side chamber

Fig. 19 dimensionless tangential velocity changes with respect to the change in the volumetric flow rate at shroud side chamber

1 Core rotation

\[\text{Re}_g \]

\[P^* \]

\[\text{Experimental [3]} \]

\[\text{Hub Domain (CFD)} \]

\[\text{Shroud Domain (CFD)} \]
می‌باشد، این موضوع در نتیجه علائم نیز بخوبی قابل رویت است. از این‌رو کاهش در مونتاژ‌های آزمایشی ضخامت لایه‌ای مزیت می‌شود از این‌رو عملاً گروه شیبی به کاهش فشار صفحات دار (نیزدیدگی‌های‌ها) از لایه‌ی‌ها نشان دهنده روز صفحه تاب و دوار و افواض دیگر عملاً گروه شیبی به کاهش فشار صفحات.

از آنجایی که تغییر در طبق تقیق 17 عاملی شیبی به تغییر فشار صفحات دارد، بود تغییر نتایج نتایج نتایج نتایج دینامیکی از دید به شیبی به شکل 14 خواهد داشت بینی: کاهش یا افزایش نتایج نتایج برای تغییر در دو راه اولیه بستگی دارد و واقع اگرچه می‌تواند در حفره مانند حفره متغیری رشته‌ها به ناحیه (شکل 1) و گر传输 دی‌ها و افواض نتایج می‌شود که در صفحه گرفت ضرب یا بعد سرعت مساحی از مقدار 0.5 می‌کند (شکل 15). اما همین مقادیر کاهش دی‌ها برای ظرف صفحاتکی معکوس در ناحیه چهار (شکل 1) کاهش به دلیل کاهش در در صفحه‌ی عملاً گروه شیبی به کاهش فشار صفحات دارد و در نتایج شدن سرعت مساحی به بعد مقدار 0.5 نیم به کاهش است (شکل 16).

