Conceptual Design of Conventional Gas Turbine Combustors Aiming at Pollutants Emission Prediction

Zoheir Saboohi¹, Fathollah Ommi*¹

1-Aerospace Group, Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
* P.O.B. 14115-143 Tehran, Iran, fommi@modares.ac.ir

Abstract

The design of combustion has long been the most challenging portion in the design process of a gas turbine. This paper focused on the conceptual design methodology for aircraft combustors. The necessity of this work arose from an urgent need for a comprehensive model that can quickly provide data in the initial phases (conceptual design and preliminary design) of the design process. The proposed methodology integrated the performance and the design of combustors. To accomplish this, a computer code has been developed based on the design procedures. The design model could provide the combustor geometry and the combustor performance. Based on the available inputs data in the initial phases of the design process, a computer reactor network (CRN) approach is selected to model the combustion with a detailed chemistry. In this way, three different chemical mechanisms are studied for phases of the design process, a chemical reactor network (CRN) approach is selected to model the combustion with a detailed chemistry. In this way, three different chemical mechanisms are studied for the design model could provide the combustor geometry and the combustor performance. Based on the available inputs data in the initial phases of the design process, a computer reactor network (CRN) approach is selected to model the combustion with a detailed chemistry. In this way, three different chemical mechanisms are studied for the design process. The design model could provide the combustor geometry and the combustor performance.

Keywords:
Gas Turbine Combustor
Conceptual Design
Chemical Reactor Network
Nitrogen Oxides Emission (NOx)
Carbon Monoxide Emission (CO)

Please cite this article using:
2- ساختار اثر حراثیات

نتایج محاسباتی از دیدگاه شیمیایی از اینگونه اثر حراثیات در شرایط مختلف همیشه مناسب است. بنابراین این جهت بهترین مهندسی محاسباتی در سطحی زیر محصولات حراثیات اثر حراثیات می‌باشد.

3- محاسبه و سطح حراثیات

نتایج محاسباتی از دیدگاه شیمیایی از اینگونه اثر حراثیات در شرایط مختلف همیشه مناسب است. بنابراین این جهت بهترین مهندسی محاسباتی در سطحی زیر محصولات حراثیات اثر حراثیات می‌باشد.

![Fig. 1 Flowchart of the combustor design procedure](image-url)

شکل 1. فلورش آرایه نیم‌برداشته‌های اصلی اثر حراثیات

1. Primary zone
2. Perfect stirred reactor
3. Plug flow reactor

430
در شرایط عمکری، هیپومنی در بی و بیشترین ترасс با دی‌پاترمار
با کرکتیم که از (kg/s atm=8 m3) و در شرایط ایده‌آل کمی از (5 kg/s atm=8 m3)
اسبانسی بیشترین مقدار رام‌پاترگار در شرایط
پوزار در بیشترین ارتفاع، کمترین کمکی و سراترین شرایط آب و
هوایی در مورد بارهای قابل قبول و حاضرهای طبخ از
کلاه برای گلوگیری از خشونتویی شعله با دی‌پاترمارگار در شرایط
بین ۵۰ kg/s atm=8 m3 شده کنار است شرایط خارج از طراحی بستگی به مقیاس و بی‌حیطی بودن طراحی
در انتهای غیرترین بحمل در مقایسه مینی شرایط طراحی و
شرایط خارج از طراحی انتخاب می‌شود.

راپترگار شدت احتراق (برای نیست گرمی آزاد شده برحجم)

\[
\text{محوطه به‌صورت رابطه} (6) \text{ است} \]

\[
\text{Intensity} = \frac{m_2 LHV}{V_p} \quad \text{(6)}
\]

\[
\text{در رابطه با حداکثر ارزی حویلی برکسپس و} \quad \text{LHV}
\]

باکدی احتراق در محوطه احتراق است. مصالحی با پاترگار مقدار
کمی شد احتراق مطابق است برای شرایط طراحی (شرط عمکری)
همسطح دریابی شرایط تررس است (باز) مقدار شدت احتراق با دی‌پاترگار
60 kg/MW/m3 دهانی بودارای در این روش برای حجم به‌صورت رابطه

\[
\text{بنا از رابطه (5) با معیار ارائه شده در رابطه} (6) \text{ بررسی شود:}
\]

در مرجع [17] برای محاسبه طرح و سطح مقطع حلقوی سایلین
جاهای خارجی و داخلی (ربی) محوطه حاوی از سه عناصر جزئی
استفاده شده است. دو رافترگار مطمئن جریان در انتهای ناحیه اولیه
و عناصر جزئی در مقطع حلقوی ورودی‌های مودر ناب در اکتیوم

محاسبه‌ای نیست این ابعاد

\[
A_r = 1.621 \times 10^{-2} \frac{m_2 T_g 0.25}{P_R} \quad \text{(7)}
\]

\[
\text{در رابطه با اینکه شکار کمپرسور است}
\]

با استفاده از رابطه پیشنهاد هدی هستش رادیو و کریم [18] می‌توان
نحوه راه‌های تعیین قطر و سطح مرجع

\[
\log_10 \rho = -1.39 - 4.40 n - 1.10 D^* \quad \text{(8)}
\]

\[
\text{در رابطه با) رشته‌جی سوخت در برکسپس پسی \text{مربی واکنش که با رافتر احتراق تقریب برای} (6)
\]

\[
D^* = 0.736 - 0.0173 \left(\frac{D_P}{P_R} \right) \quad \text{ضریب تجربی که مقدار Q را برای رابطه (8) است.}
\]

\[
D^* = 0.736 - 0.0173 \left(\frac{D_P}{P_R} \right) \quad \text{(9)}
\]

\[
\text{پاترگار} D^* \text{ برای نفوذ پاترگار محسوب می‌شود با استفاده از رابطه (10) \text{ برای پاترگار تا مسیر است (8)}
\]

\[
\frac{P_L}{P_R} = \left(10^{-2.054 \times 10^{-1205}} \right) \left(\frac{T_g}{1.2327 \times 10^{-1205}} \right) \quad \text{(10)}
\]

\[
\text{مقدار پاترگار} \text{ در رابطه با پاترگار احتراق تقریب برای (6) با استفاده از رابطه (9) \text{ برای پاترگار است (8)}.
\]

\[
D^* = 0.736 - 0.0173 \left(\frac{D_P}{P_R} \right) \quad \text{ضریب تجربی که مقدار Q را برای رابطه (8) است.}
\]

\[
D^* = 0.736 - 0.0173 \left(\frac{D_P}{P_R} \right) \quad \text{(9)}
\]

\[
L = \frac{m_2}{V R_{\text{ref}} 1.8 10^{-40} (\text{mg})} \quad \text{(5)}
\]

شکل 2 مانور قطر مرجع و قطر لنز از انواع محوطه‌های احتراق

راه‌ریز (2) جهت محاسبه سطح مرجع با در نظر گرفتن ملاحظات

\[
\text{ابعاد اتفاق (اداره پلیمر) مورد استفاده:}
\]

\[
A_{\text{ref}} = \left(143.5 \frac{m_2 P_{\text{ref}}}{P_R} \right)^{0.5} \quad \text{(2)}
\]

\[
\text{در رابطه با دی‌پاترگار دی‌پاترگار ورودی} P_3 \text{ مقدار}
\]

\[
A_{\text{ref}} = \frac{m_3 P_{\text{ref}}^{0.6}}{P_R} \quad \text{(3)}
\]

\[
\text{بنا استفاده از رابطه (5) است}
\]

\[
\text{تاریک مقدار:}
\]

\[
\text{مقدار پاترگار} \text{ در رابطه با پاترگار احتراق تقریب برای (6) با استفاده از رابطه (5) \text{ برای پاترگار است (8)}.
\]

\[
L = \frac{m_2}{V R_{\text{ref}} 1.8 10^{-40} (\text{mg})} \quad \text{(5)}
\]

شکل 2 مانور قطر مرجع و قطر لنز از انواع محوطه‌های احتراق

راه‌ریز (2) جهت محاسبه سطح مرجع با در نظر گرفتن ملاحظات

\[
\text{ابعاد اتفاق (اداره پلیمر) مورد استفاده:}
\]

\[
A_{\text{ref}} = \left(143.5 \frac{m_2 P_{\text{ref}}}{P_R} \right)^{0.5} \quad \text{(2)}
\]

\[
\text{در رابطه با دی‌پاترگار ورودی} P_3 \text{ مقدار}
\]

\[
A_{\text{ref}} = \frac{m_3 P_{\text{ref}}^{0.6}}{P_R} \quad \text{(3)}
\]

\[
\text{بنا استفاده از رابطه (5) است}
\]

\[
\text{تاریک مقدار:}
\]

\[
\text{مقدار پاترگار} \text{ در رابطه با پاترگار احتراق تقریب برای (6) با استفاده از رابطه (5) \text{ برای پاترگار است (8)}.
\]

\[
L = \frac{m_2}{V R_{\text{ref}} 1.8 10^{-40} (\text{mg})} \quad \text{(5)}
\]
طراحی مفاهیم محیط اختراعات تنشیز کن در راه اندازی اولیه آنلاین‌ها

3-4 مدل میکروسیستم

3-4-1 سایر اجزای

3-4-2 معرفی

3-4-3 مدل توزیع شدت

4-1 مقدار خودکار

4-2 مقدار خودکار

4-3 مقدار خودکار

4-4 مقدار خودکار

fig. 3 model and design parameters of an annular step diffuser

شکل 3 مدل و پارامترهای مدل‌سازی دیفروزر حلقوی

$$D_R = \left(\frac{4}{\pi \Psi_{ref} \rho_f} \right)^{1/3}$$ (11)

$$\mu_{PZ} = \frac{\delta_{PZ}}{\delta_{total}} = \frac{\Phi_{PZ}}{\Phi_{total}}$$ (15)

$$\mu_{SZ} = \frac{\delta_{SZ}}{\delta_{total}} = \frac{\Phi_{SZ}}{\Phi_{total}}$$ (16)

$$\mu_{HZ} = \frac{\delta_{HZ}}{\delta_{total}} = 1 - \mu_{cool} - \mu_{PZ} - \mu_{SZ}$$ (17)

در رابطه با Φ نسبت هواباری مخلوط سوخت و هواست.

2-4 دیفروزر

پیش از از آغاز مدل‌سازی سرعت جریان هوا به دیفروزر مورد به میزان قابلیت کاهش باید این ابزار طبق استاندارد از دیفروزر بین خروجی کمپرسور و ورودی لایه مخلوط سوخت و هواست گردد.

در این مقاطع مرکز دیفروزر حلقوی است. این دیفروزرها که ممکن است جایگاه مستقیم و یا تکمیلی از دیفروزر و دیفروزر پیوندی باشند. در مدل‌سازی استفاده کرده‌ایم 3 مدل دیفروزر و پارامترهای مرتب به آن را نسبت به مدل‌های گوناگون دیفروزر به دست آورده‌ایم. در خروجی است.

روند کار می‌باشد که دیفروزر آغاز مسود در اینجا مشخص می‌کند. اعضا با دیفروزر دیفروزر مناسب می‌شود. بارده در دیفروزر دیفروزر مدل با استفاده از رابطه (18) محاسبه می‌شود.

$$\eta_{straight-wall} = 1.114 - 0.0172 (28) + 1.99 \times 10^{-4} (28)^2 - 9.3 \times 10^{-7} (28)^3 + 1.6 \times 10^{-9} (28)^4$$ (18)

در صورتی که سطح مقطع در ایستگاه 32 بزرگتر از پیش‌بینی می‌شود، دیفروزر به صورت تکمیلی از دیفروزر جدید مستقیم و دیفروزر پیوندی در نظر گرفته می‌شود. بارده در دیفروزر با استفاده از رابطه (19) محاسبه می‌شود.

$$\eta_{total} = \eta_{straight-wall} A R (1 - \mu_m) + 2 (A R_m \mu_m - 1)$$ (19)

$$\mu_m = \frac{\eta_{straight-wall} A R (1 - \mu_m)}{A R_m \mu_m - 1}$$

$$\Delta P_{33} = \frac{\Phi_{33}}{\Phi_{32}}$$ (20)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (21)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (22)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (23)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (24)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (25)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (26)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (27)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (28)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (29)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (30)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (31)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (32)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (33)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (34)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (35)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (36)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (37)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (38)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (39)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (40)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (41)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (42)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (43)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (44)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (45)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (46)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (47)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (48)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (49)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (50)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (51)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (52)

$$\mu_{cool} = \frac{\mu_{cool, max} - \mu_{cool, ref}}{\Phi_{cool, max} - \Phi_{cool, ref}}$$ (53)

$$\mu_{cool, max} = \frac{\Phi_{cool, max}}{\Phi_{33}}$$ (54)

$$\mu_{cool, ref} = \frac{\Phi_{cool, ref}}{\Phi_{33}}$$ (55)
4-5 ناحیه‌های گردنی و اولیه

شماکی از ناحیه گردنی محفظه اختراع متغیر در شکل 5 نمایش داده شده است. موضعی جالبی محفظه کننده با استفاده از مفاهیم "دره‌های جادویی" تعبیر می‌شود. دیگر در شکل 5 نمایش داده شده است. موضعی محفظه کننده با استفاده از مفاهیم "دره‌های جادویی" تعبیر می‌شود.

$$L_{ig} = \frac{D_n}{4} \left[1 + \cot \left(\frac{\pi - \theta_{dome}}{2} \right) \right] + \theta_{dome} + \frac{D_n}{4}$$

(25)

در این مکانیکه، اختراع متغیر در شکل 5 نمایش داده شده است. موضعی محفظه کننده با استفاده از مفاهیم "دره‌های جادویی" تعبیر می‌شود.

$$L_{dome} = \frac{D_n - D_{SW}}{2 \tan (\theta_{dome})}$$

(26)

با توجه به شکل 5 نمایش داده شده است. موضعی محفظه کننده با استفاده از مفاهیم "دره‌های جادویی" تعبیر می‌شود.

$$f_{dome} = \frac{D_n}{2}$$

(27)

با توجه به شکل 5 نمایش داده شده است. موضعی محفظه کننده با استفاده از مفاهیم "دره‌های جادویی" تعبیر می‌شود.

$$L_{R}= L_{\text{lighter}} + \frac{D_n}{2}$$

(28)

با توجه به شکل 5 نمایش داده شده است. موضعی محفظه کننده با استفاده از مفاهیم "دره‌های جادویی" تعبیر می‌شود.

6-4 ناحیه‌های ریفریسی و ریفر

ویژگی اصلی از ناحیه تاندونی و ناحیه ریفریسی و ریفریسیو وجود سرولاژی خنک کاری است. جریان سرولاژی خنک کاری از طریق سرولاژی که در این دو ناحیه به همین دلیل است. مکانیسم محفظه اختراع معاصر مورد بحث و نظر اجای از سرولاژی محاسبه گردنی و در شکل 5 نمایش داده شده است. موضعی محفظه کننده با استفاده از مفاهیم "دره‌های جادویی" تعبیر می‌شود.

$$V_{\text{max}} = 1.15 \frac{f_{\text{max}}}{d_{l}}$$

(29)

با توجه به شکل 5 نمایش داده شده است. موضعی محفظه کننده با استفاده از مفاهیم "دره‌های جادویی" تعبیر می‌شود.
با توجه به اینکه سرعت سیال در داخل محیط فرکند نیز استفاده گرفته شده است. این اینکه اینکه اینکه اینکه اینکه اینکه
6-2 مدل اختلال غیرهمگن
جهت مدل‌سازی گیرنداختی و پراکندگی نسبت هیوئازی که در محضه
اتراحی و بررسی، مدل اختلال غیرهمگن آن را استفاده کرده و در
حالی که با نام جمعه اختلال هم شناخته می‌شود، در این شاخص مورد
استفاده قرار گرفت. درجه مقدار اختلال برای تعداد شماره‌گیری بر
نسبت هیوئازی می‌باشد (2) که در مورد تعداد مثبت می‌باشد.

\[S = \frac{\sigma}{\bar{\sigma}} \] (41)

با موری ذکر داده می‌شود که توزیع یکی از مدل‌های مانند این
نسبت هیوئازی (S) می‌باشد. در مدل‌های مانند سیستم‌های توزیع
محقعت‌های مختلف جود دارد که در (7) در کل مقاله تشریح
باشند. مقدار اختلال میانگین با استفاده از رابطه (41) محاسبه می‌شود.

\[f(\bar{\sigma}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\bar{\sigma} - \bar{\sigma})^2}{2\sigma^2}} \] (42)

مدل اختلال مقدار اختلال استحکام و توانایی به نسبت هیوئازی
توجه گیرند، جرح و آلودگی و بسیاری از تواناییهای محاسبه می‌شود. سرباری
راجی و جتی به در محدوده طبیعی و برای کمک به تدریج در
این سطح اختلال مربوط به توانایی دیدار نا مهیا در نمایش
سازمان و با استفاده از داده‌های جزئی موجود در (27) که در
با موری ذکر داده می‌شود که توزیع یکی از مدل‌های مانند این
نسبت هیوئازی (S) می‌باشد. در مدل‌های مانند سیستم‌های توزیع
محقعت‌های مختلف جود دارد که در (7) در کل مقاله تشریح
باشند. مقدار اختلال میانگین با استفاده از رابطه (41) محاسبه می‌شود.

\[f(\bar{\sigma}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\bar{\sigma} - \bar{\sigma})^2}{2\sigma^2}} \] (42)

مدل اختلال مقدار اختلال استحکام و توانایی به نسبت هیوئازی
توجه گیرند، جرح و آلودگی و بسیاری از تواناییهای محاسبه می‌شود. سرباری
راجی و جتی به در محدوده طبیعی و برای کمک به تدریج در
این سطح اختلال مربوط به توانایی دیدار نا مهیا در نمایش
سازمان و با استفاده از داده‌های جزئی موجود در (27) که در
با موری ذکر داده می‌شود که توزیع یکی از مدل‌های مانند این
نسبت هیوئازی (S) می‌باشد. در مدل‌های مانند سیستم‌های توزیع
محقعت‌های مختلف جود دارد که در (7) در کل مقاله تشریح
باشند. مقدار اختلال میانگین با استفاده از رابطه (41) محاسبه می‌شود.

\[f(\bar{\sigma}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\bar{\sigma} - \bar{\sigma})^2}{2\sigma^2}} \] (42)

مدل اختلال مقدار اختلال استحکام و توانایی به نسبت هیوئازی
توجه گیرند، جرح و آلودگی و بسیاری از تواناییهای محاسبه می‌شود. سرباری
راجی و جتی به در محدوده طبیعی و برای کمک به تدریج در
این سطح اختلال مربوط به توانایی دیدار نا مهیا در نمایش
سازمان و با استفاده از داده‌های جزئی موجود در (27) که در
با موری ذکر داده می‌شود که توزیع یکی از مدل‌های مانند این
نسبت هیوئازی (S) می‌باشد. در مدل‌های مانند سیستم‌های توزیع
محقعت‌های مختلف جود دارد که در (7) در کل مقاله تشریح
باشند. مقدار اختلال میانگین با استفاده از رابطه (41) محاسبه می‌شود.

\[f(\bar{\sigma}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\bar{\sigma} - \bar{\sigma})^2}{2\sigma^2}} \] (42)

مدل اختلال مقدار اختلال استحکام و توانایی به نسبت هیوئازی
توجه گیرند، جرح و آلودگی و بسیاری از تواناییهای محاسبه می‌شود. سرباری
راجی و جتی به در محدوده طبیعی و برای کمک به تدریج در
این سطح اختلال مربوط به توانایی دیدار نا مهیا در نمایش
سازمان و با استفاده از داده‌های جزئی موجود در (27) که در
با موری ذکر داده می‌شود که توزیع یکی از مدل‌های مانند این
نسبت هیوئازی (S) می‌باشد. در مدل‌های مانند سیستم‌های توزیع
محقعت‌های مختلف جود دارد که در (7) در کل مقاله تشریح
باشند. مقدار اختلال میانگین با استفاده از رابطه (41) محاسبه می‌شود.
Fig. 7 Mixing parameter as a function of primary zone equivalence ratio

Fig. 8 Reactor temperature versus equivalence ratio for a single PSR

Table 1 Comparison of the amount of species and reactions from considered chemical mechanism

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Overall PSR</th>
<th>CR1</th>
<th>CR2</th>
<th>CR3</th>
<th>Ranzi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>484</td>
<td>1395</td>
<td>48020</td>
<td>48020</td>
<td>48020</td>
</tr>
<tr>
<td>NO</td>
<td>30</td>
<td>95</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>H2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Comparison of the amount of species and reactions from the considered chemical mechanism. The table shows the number of species (left column) and reactions (right column) for various reaction mechanisms (CR1, CR2, CR3, and Ranzi). The table includes species like CO, NO, and H2, and reactions that involve these species. The overall PSR column indicates the total number of species and reactions for each mechanism.

Fig. 7 illustrates the mixing parameter as a function of the primary zone equivalence ratio. The graph shows a fitted curve that represents the relationship between the mixing parameter and the equivalence ratio. The x-axis represents the equivalence ratio, while the y-axis represents the mixing parameter.

Fig. 8 displays the reactor temperature versus the equivalence ratio for a single PSR. The graph shows data for different equivalence ratios, indicating how the reactor temperature changes with variations in the equivalence ratio. The x-axis represents the equivalence ratio, and the y-axis represents the reactor temperature.

The table and figures are related to the discussion of chemical mechanisms, species, and reactions in the text. The table provides a quantitative comparison, while the figures illustrate the practical implications of the data presented.
Fig. 9 NO molar fraction versus equivalence ratio for a single PSR

Fig. 10 CO molar fraction versus equivalence ratio for a single PSR

Fig. 11 Schematic of the CFM56 engine combustor [19]

Kari, a single PSR.

Fig. 12 The schematic of the CFM56 engine combustor [19].

CFM56 engine combustor [19].
Table 2 Cycle parameters of the CFM56 engine combustor

<table>
<thead>
<tr>
<th>Net heat input (kJ)</th>
<th>SFC (g/kWe)</th>
<th>DBI (kg/sec)</th>
<th>DBI (kg/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.42</td>
<td>800</td>
<td>2900</td>
<td>1.276</td>
</tr>
<tr>
<td>0.39</td>
<td>764</td>
<td>2477</td>
<td>1.040</td>
</tr>
<tr>
<td>0.245</td>
<td>613</td>
<td>1132</td>
<td>0.349</td>
</tr>
<tr>
<td>0.144</td>
<td>505</td>
<td>559</td>
<td>0.119</td>
</tr>
</tbody>
</table>

Table 3 Combustor reference diameter values (meter)

<table>
<thead>
<tr>
<th>Cycle parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22E-01</td>
</tr>
<tr>
<td>1.99E-01</td>
</tr>
<tr>
<td>1.26E-01</td>
</tr>
<tr>
<td>1.14E-02</td>
</tr>
<tr>
<td>1.05E-01</td>
</tr>
</tbody>
</table>

Table 4 Comparing of the calculated values and actual geometrical data of the CFM56 engine combustor

<table>
<thead>
<tr>
<th>Calculation Method</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter H/D</td>
<td>0.795</td>
</tr>
<tr>
<td>Diameter W/D</td>
<td>0.700</td>
</tr>
<tr>
<td>Diameter D/P</td>
<td>0.714</td>
</tr>
<tr>
<td>Diameter E/F</td>
<td>0.712</td>
</tr>
</tbody>
</table>

شکل 12 نشان دهنده نقشه اجرایی محور الکتریکی از محور الکتریکی از محور الکتریکی CFM56 می‌باشد.

شکل 13 مقایسه نیروگاهی محور الکتریکی CFM56 برای مختلف محور الکتریکی CFM56 می‌باشد.

شکل 14 مقایسه نیروگاهی محور الکتریکی CFM56 برای مختلف محور الکتریکی CFM56 می‌باشد.

