Extended Finite Element analysis of a stationary crack in hygrothermal isotropic media subjected to thermal shock

Mohammad Bagher Nazari*, Hamid Rajaei

School of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
* P.O.B. 3618785545, Shahrood, Iran. mbnazari@shahroodut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 21 August 2016
Accepted 02 November 2016
Available Online 04 January 2017

Keywords:
Extended Finite Element Method (XFEM)
Isotropic Materials
Stress Intensity Factors (SIFs)
Hygrothermal Loading

ABSTRACT

In this paper, the extended Finite Element Method (XFEM) is implemented to compute the Stress Intensity Factors (SIFs) for rectangular media subjected to a hygrothermal loading. In governing hygrothermoelasticity equations, the cross coupling of temperature and moisture fields and temperature-dependent diffusion in some cases are considered. Furthermore, an interaction integral for hygrothermal loading is developed to compute the stress intensity factors. The non uniform mesh of isoparametric eight-nod rectangular element is used in XFEM to decrease the absolute error in SIFs computations. In order to validate numerical results, the SIF of mode I is obtained analytically. The coupled governing equations are firstly decoupled in terms of new variables and then solved by the separation of variable method. According to the results, the moisture concentration gradient has a significant effect on the SIFs so should be considered in the model. Until temperature reaches its steady state, the cross coupling of temperature and moisture synchronizes their time variation which affects on the time variation of SIF. At the beginning of thermal shock, the SIF for shorter cracks is not necessarily less than the longer ones. Also, the mode I SIF for longer and inclined cracks is smaller. On the other hand, considering the moisture concentration as a temperature function the time required to reach the moisture steady state.
\[u(x) = \sum_{n=0}^{\infty} \frac{a_n}{\sqrt{n+1}} \sin(n\pi x) \]

In particular, the solution may be represented as:

\[u(x) = \sum_{n=0}^{\infty} a_n \sin(n\pi x) \]

The coefficients \(a_n \) can be determined using the boundary conditions or by solving the corresponding differential equation.
روابط هاتفی و تغییرات گرفتاری (قانون فوریه، رابطه (قانون فیکس) و تشیع

$\rho = -k\nabla T$

(1) رابطه (7) است.

$\tau = -\sigma \nabla T$

(2) رابطه (7) است.

$\sigma_D = \sigma - \epsilon^{th} - \epsilon^{mo}$

(3) که در آن ϵ^{th} و ϵ^{mo} با استفاده از رابطه (8) به دست می‌آید.

$\epsilon^{th} = \Delta T$

(4) در این روابط، ΔT، تغییر در دمای دسته‌ای است.

$\epsilon^{mo} = \gamma \Delta C$

(5) که در آن ΔC تغییر در دمای دسته‌ای است.

$\zeta = \left(\begin{array}{c} \alpha \\ \beta \\ \gamma \\ \zeta \end{array} \right)$

(6) تعریف می‌شود.

$\gamma = \left(\begin{array}{c} \alpha \\ \beta \end{array} \right)$

(7) در این روابط.

$\gamma = \left(\begin{array}{c} \alpha \\ \beta \end{array} \right)$

(8) تعریف می‌شود.

$\alpha = \frac{E}{1 - \nu^2}$

(9) ν، شیب انقباض کرمان و E، مدول تنشی است.

$\beta = \frac{E}{(1 + \nu)(1 - 2\nu)}$

(10) ν، شیب انقباض کرمان و E، مدول تنشی است.

$\gamma = \frac{E}{(1 + \nu)(2 - 2\nu)}$

(11) ν، شیب انقباض کرمان و E، مدول تنشی است.

$\begin{cases}
Ku = \rho^{\text{ext}} \\
\epsilon^{th} = \epsilon^{th} \rho^{\text{ext}} \\
\epsilon^{mo} = \epsilon^{mo} \rho^{\text{ext}} \\
\end{cases}$

(12) ρ^{ext}، شیب انقباض کرمان و E، مدول تنشی است.

$\begin{cases}
\epsilon^{th} = \epsilon^{th} = \epsilon^{th} \\
\epsilon^{mo} = \epsilon^{mo} = \epsilon^{mo} \\
\end{cases}$

(13) ϵ^{th} و ϵ^{mo} با توجه به "شکل 2" ساختارهای مختلفی به دست می‌آید.

شکل 2 شیب انقباض کرمان و E، مدول تنشی است.

Fig. 1 Enrichment nodes in XFEM. Square: crack tip enrichment. Circle: Heaviside enrichment.

شکل 1 شیب انقباض کرمان و E، مدول تنشی است.

نوک ترک دایره دیگری با تابع پله‌ای
\[
\begin{align*}
M &= \int \left(a_{ij} u_{ijx} + a_{ijxu_{ijx}} - W^{\text{int}} \delta_{ij} \right) q \, dA \\
&\quad + \int a_{ij} u_{ijx} \, dA + a_{ijx} u_{ijx} - W^{\text{int}} \delta_{ij} \cdot q \, dA \\
&W^{\text{int}} = \int a_{ij} u_{ijx} + a_{ijx} u_{ijx} + \left(\frac{\partial W^{\text{int}}}{\partial x_1} \right) \left(\frac{\partial W^{\text{int}}}{\partial x_2} \right)
\end{align*}
\]

4. Integral Boundary Conditions

\[e^{\text{int}} = e^{\text{th}} + e^{\text{mo}} \]

\[[C]^{\text{th, mo}} = \left[\begin{array}{c}
\frac{G_n}{T_n} \\
\frac{E_n}{T_n}
\end{array} \right]
\]
در حل عددی بسیاری از ترکیب‌های فیزیکی در اینجا نتیجه‌گیری‌های جدیدی از آنها را مطرح می‌کنیم.

6- حل تحلیلی در پارکه‌های ترک عمومی مناسب

یک آنتن بسامت گراندی در عرض محدود و با اندازه‌های بسامت مناسب بوده تا در نظر گرفته شوند. مدار separat در رابطه با برقراری پایداری در خوراکیات است.

در اینجا، به‌عنوان مثال، مدار separat در رابطه با تغییرات مدار separat در رابطه با تغییرات مدار separat در رابطه با وارد شدن مدار separat در رابطه با وارد شدن

\[\alpha = \sqrt{2} \]

\[\beta = \sqrt{2} \]

\[\gamma = \sqrt{2} \]

\[\delta = \sqrt{2} \]

\[\epsilon = \sqrt{2} \]

\[\zeta = \sqrt{2} \]

\[\eta = \sqrt{2} \]

\[\theta = \sqrt{2} \]

\[\varphi = \sqrt{2} \]

\[\psi = \sqrt{2} \]

\[\chi = \sqrt{2} \]

\[\psi = \sqrt{2} \]

\[\chi = \sqrt{2} \]

\[\psi = \sqrt{2} \]

\[\chi = \sqrt{2} \]

\[\psi = \sqrt{2} \]

\[\chi = \sqrt{2} \]

\[\psi = \sqrt{2} \]

\[\chi = \sqrt{2} \]

\[\psi = \sqrt{2} \]

\[\chi = \sqrt{2} \]

\[\psi = \sqrt{2} \]

\[\chi = \sqrt{2} \]

\[\psi = \sqrt{2} \]

\[\chi = \sqrt{2} \]
6-2- مباحث استناد

با خوده پی چیه شرحی فریاد، شرایط است بالینی و عدم وجود

\[\sigma_{xx}(x,t) = 0 \quad (50) \]

\[\sigma_{yy}(x,t) = 0 \quad (50) \]

\[\sigma_{ij}(x,t) = 0 , \quad i \neq j \quad (i,j = x,y) \quad (50) \]

با جایگزینی مقادیر فوق در معادله سازگاری:

\[\frac{\partial^2 \sigma_{yy}(x,t)}{\partial x^2} = 0 \quad (51) \]

با حل این معادله، لرتش بهصورت رابطه (52) به دست می‌آید.

\[\sigma_{yy}(x,t) = A(t) x + B(t) \quad (52) \]

با به کار بردن فاصله هواک نش با دست از تعداد 53 (53) بهشت امتیاز.

\[\sigma_{yy}(x,t) = E(A(t) x + B(t) - \alpha \Delta T(x,t) - \beta \Delta C(x,t)) \quad (53) \]

که در آن، با خوده پی چیه شرحی فریاد از راهبرد دیگری از

شراپ (54) و گشتاور بهصورت رابطه (54) بهشت.

\[A(t) = \frac{-6}{b^2} (T_0 - T_1) \left\{ \int_{0}^{b} \Delta T(x,t) \, dx + \frac{\lambda_1 \beta}{b} \int_{0}^{b} C^*(x,t) \, dx + \frac{2}{b} \int_{0}^{b} \Delta T(x,t) \, dx \right\} \]

\[B(t) = \frac{(T_0 - T_1)}{b^2} \left\{ \int_{0}^{b} \Delta T(x,t) \, dx + \frac{\lambda_1 \beta}{b} \int_{0}^{b} C^*(x,t) \, dx + \frac{2}{b} \int_{0}^{b} \Delta T(x,t) \, dx \right\} \]

(55)

6-3- مباحث ضریب شدت استناد

روش تابع زنی یک ازار متور برای تعیین ضریب شدت استناد با توجه به

توزیع شدت در جسم به هم نزدیک است. اگر تابع زنی یک جسم دارای

تک مکانیکی با اکران خاصی در دو نوع و تنظیم شدت در

جسم بودن تک روز سطح تک می‌باشد شدت استناد را به تعداد از

ضریب استاندارد تابع زنی اکران استفاده برای شکل "2"

با استفاده از تابع زنی یک جسم اکران شدت استفاده است (64) قابلیت است

\[K_s = 2 \sqrt{\frac{1 - \alpha}{\pi b}} \int_{0}^{a} \frac{\sigma_{yy}(x,t) \sigma_{xy}(x,a)}{\sqrt{a^2 - x^2}} \, dx \]

(66)

با استفاده از تابع زنی اکران شدت استفاده است.

نتایج عددی

7-1- اثرات دارای تک لبه عمودی تحت شکل گربه‌ای

با حل رابطه (58)، مشتق دو به صورت زیر به دست می‌آید.

\[s_1 = (D - D) + \sqrt{(D - D)^2 + 2\lambda_1 \lambda_2 \Delta D} \quad (40) \]

شراپ اولیه و مری معادله (39) با توجه به شرایط مرزی و اولیه مطلوب

البته با شکل رابطه (41) است.

\[F_1(t,0) = -\sigma_1 \quad (41) \]

\[F_2(b,t) = 0 \quad (41) \]

\[F_1(x,0) = 0 \quad (41) \]

با استفاده از توابع اولیه، معادله دوم به دست می‌آید.

\[\tau_2 = \frac{\partial (\sigma_1 + \sigma_2)}{\partial x} \quad (42) \]

جواب می‌شود.

\[\frac{\partial^2 \tau_2 \sigma_1}{\partial x^2} = \frac{\partial (\sigma_2)}{\partial x} \quad (42) \]

در این مقدار، برای دست از تعداد 56 (56) بهشت.

\[F_1(t,0) = \frac{\sigma_1}{\Omega} \quad (46) \]

\[F_2(t,b) = 0 \quad (46) \]

\[F_2(b,0) = 0 \quad (46) \]

\[F_2(t,x) = \frac{\sigma_1}{\Omega} \quad (47) \]

\[F_2(t,x) = \frac{\sigma_1}{\Omega} \quad (47) \]

\[F_2(t,x) = \frac{\sigma_1}{\Omega} \quad (47) \]

با استفاده از تابع زنی یک جسم اکران شدت استفاده است.

\[F_1(t,x) = \frac{s_1}{\Omega} \sigma_1 \quad (48) \]

\[F_2(t,x) = \frac{s_1}{\Omega} \sigma_1 \quad (48) \]

\[F_2(t,x) = \frac{s_1}{\Omega} \sigma_1 \quad (48) \]

\[\frac{\sigma_1}{\Omega} \quad (47) \]
بی‌ผลงาน جدید برای تفاوت‌های زمانی در نمایی ضریب شدت نش به ترکیب عناصر و گره‌های نشان دارد.

\[a/b = 0.2 \]

\[k = 7.78 \times 10^4 \text{ cm}^2/\text{hr} \]
\[D = 7.78 \times 10^7 \text{ cm}^2/\text{hr} \]
\[v = 0.3 \]
\[\alpha = 3.13 \times 10^4 \text{ cm} / \text{C} \]
\[\beta = 2.68 \times 10^{-3} \text{ cm} / \text{cm H}_2 \text{O} \]
\[\lambda_2 = 0.5 \text{ g/cm}^3 \]
رسیمه‌ای است. این مطالعه به تکرار این محققان ارائه شده است. در این مقاله، نسبت فرکانس الکتریکی (EMF) و تغییرات دما را بررسی کرده و تأثیرات آن‌ها را بر این بافت تحلیل کرده‌اند. با توجه به نتایج، تغییرات دما بر این بافت تاثیر می‌گذارد و باعث ایجاد تغییرات در فرکانس الکتریکی (EMF) می‌شود. در نهایت، این مطالعه به پیشنهاد‌هایی برای بهبود کیفیت بافت‌های این بافت ارائه شده است.
Fig. 14 Eight-node elements with edge crack and enriched nodes under hygrothermal loading

Fig. 15 Long-enough influence with normal bound and angled crack

Fig. 16 The first mode SIF for different meshes

Fig. 17 Stress distribution plate with an edge crack under hygrothermal loading

\[E = 125 \times 10^3 \text{ MPa}, v = 0.33, n_c = 45 \]
Fig. 17 Moisture diffusion coefficient changes according to temperature

Table 2 Time and amount of maximum stress intensity factors for different angles

<table>
<thead>
<tr>
<th>Angle</th>
<th>SIF (Pa√m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>1.4277 × 10^8</td>
</tr>
<tr>
<td>30°</td>
<td>1.2514 × 10^7</td>
</tr>
<tr>
<td>45°</td>
<td>6.5134 × 10^7</td>
</tr>
</tbody>
</table>

Fig. 15 The first mode SIF, in an isotropic plate with an edge crack under hygrothermal loading with different crack angles

Fig. 16 The second mode SIF, in an isotropic plate with an edge crack under hygrothermal loading with different crack angles

9. Poisson's ratio: Zoning effects on the mechanical properties of composites

10. References

