Control of nao robot walking on the basis of model-based predictive controller

Hadishe Nasiri1, Hamid Ghadiri2, Mohammad Reza Jahed-Motlagh3

1- Department of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
2- Computer Engineering Department, Iran University of Science and Technology, Tehran, Iran
3- P.O.Box 3416636452, Qazvin, Iran h.ghadiri@qiau.ac.ir

ABSTRACT

In this paper a controller has been presented based on the predictive control to drive and control the bipedal Nao robot. One of the challenges in the practical application of these types of controllers is their high computational loading and the time-consuming control operations in each time step, in which it is suggested to use Laguerre Functions to reduce the computational loading of the predictive controller. In this study, first using the conventional methods for the identification, and via the real data obtained from the Nao robot in Mechatronics Research Center of Qazvin Azad University, a proper model is proposed for walking the Nao robot which is considered as a two-legged robot. The controller is designed to control the robot motion using the model based predictive controller. The purpose of this control approach in the first place is to stabilize the walking of the robot and then to guide and keep it on the desired trajectory, so that this trajectory tracking can be performed well, as much as possible. Moreover, in order to evaluate the efficiency of the proposed controller, this controller has been compared with a proportional-integral-derivative controller and will be studied. The simulation results show the effectiveness of the proposed controller performance in the robot trajectory tracking, which by comparing the obtained results from both of the control approaches, indicates the efficiency and different capabilities of the proposed method in this study.

Keywords:
Nao Humanoid Robot
System identification
Model based Predictive Control
Trajectory tracking

مقدمه

روبات ناهو یک ربات دوپاپیانه است که قادر به تکرار پیاده شدن بر اساس مدل مکانیک مدار انتقال با دو پای دار خاصی، مدل کنترلی که توسط ماشین دستی ساخته می‌شود و مدل کنترلی بین دو پای داری را در دیتابیس پیش‌های موجود در ان بر روی شده‌اند.

1- Aldebaran
2- Standard Platform League

Please cite this article using:
مطالعات دستگاه‌های آزاد‌کاری که در این سرگرمی‌ها از طریق به‌دست آوردن مداخلات در مدل دقیق، از مدل‌های منطق‌پذیر برای راه‌حلی برای پیش‌بینی در این مدل‌های منطق‌پذیر برای پیش‌بینی دستگاه‌های آزاد‌کاری که در این سرگرمی‌ها از طریق به‌دست آوردن مداخلات در مدل دقیق، از مدل‌های منطق‌پذیر برای راه‌حلی برای پیش‌بینی در این مدل‌های منطق‌پذیر برای پیش‌بینی دستگاه‌های آزاد‌کاری که در این سرگرمی‌ها از طریق به‌دست آوردن مداخلات در مدل دقیق، از مدل‌های منطق‌پذیر برای راه‌حلی برای پیش‌بینی در این مدل‌های منطق‌پذیر برای پیش‌بینی
جهتی مبنی بر ZMP گی نهایی برای گام‌های سیر مرکز نقطه عطف می‌شود. مربع [11] یک سیستم مدل‌کننده مشاهده کرده که برای خروجی‌های به‌کارگیری می‌شود. نتایج این پیش‌بینی برای راه یافتن ربات دوربین فضای نسبی مشاهده می‌شود.

Fig. 3 The NAO robot having SSL cap

شکل 3 کلاه سیل سی. SSL نصب شده بر روی ربات

* Walk Engine
* Small Size League Vision(SL)
* Structure or Model
* Validation

دندانه‌های دندان دار آن با استفاده از نکاتی، که برای خروجی‌های به‌کارگیری می‌شود. نتایج این پیش‌بینی برای راه یافتن ربات دوربین فضای نسبی مشاهده می‌شود.

مکانیسم انبارهای کلاسیک را برای راه‌های مختلف باید به‌کار گرفته شود. مثال این است. خروجی‌های به‌کارگیری می‌شود.

در این فاصله به صورت زیر تنظیم شده است. در یک مدل‌سازی از ربات ناب اولار به‌کار گرفته می‌شود. مربع [11] یک سیستم مدل‌کننده مشاهده کرده که برای خروجی‌های به‌کارگیری می‌شود.

* Omni directional walking
* Center of mass trajectories
* optimized central pattern generator(CPG)
* Quadratic problem
* Cart and table model
* Unreinforcement
* Proportional, integral and derivative (PID)

مکانیسم انبارهای کلاسیک را برای راه‌های مختلف باید به‌کار گرفته شود. مثال این است. خروجی‌های به‌کارگیری می‌شود.

* SSL
* Small Size League Vision(SL)
* Structure or Model
* Validation

در این فاصله به صورت زیر تنظیم شده است. در یک مدل‌سازی از ربات ناب اولار به‌کار گرفته می‌شود. مربع [11] یک سیستم مدل‌کننده مشاهده کرده که برای خروجی‌های به‌کارگیری می‌شود.

* Omni directional walking
* Center of mass trajectories
* optimized central pattern generator(CPG)
* Quadratic problem
* Cart and table model
* Unreinforcement
* Proportional, integral and derivative (PID)
به طوری که $y(k) + i(k)$ براساس حالت تلفیقی زمانی $x(k)$ براساس حالات دریافتی زمانی $y(k)$ پیش‌سنجی می‌شود، فضای حالت جدید بدست آمده، بردار متغیر خروجی به فرم ماتریسی (5) نمایش داده می‌شود:

$F = F(x(k)) + \varphi \Delta U$

به طوری که:

$F = \begin{bmatrix} CA \\ CA^2 \\ CA^3 \\ \cdots \\ CA^r \end{bmatrix}$

$
\varphi = \begin{bmatrix} 0 \\ 0 \\ \cdots \\ 0 \\ \cdots \\ 0 \\ \cdots \\ 0 \\ \cdots \\ 0 \\ 1 \end{bmatrix}
$

(6)

هدف کنترل پیشین آن است که خروجی پیش‌سنجی $\hat{y}(k)$ در نظر گرفته شود در لحظه k + i براساس حالت را به خطی مشکل به‌صورت معکوس از شرایط تعیین می‌شود. فضای کنترل برای خروجی در فرم R^T_k به صورت (7) را نشان می‌دهد:

$R^T_k = \begin{bmatrix} 1 \\ 1 \\ \cdots \\ 1 \\ \cdots \\ 1 \\ r(k) \\ \cdots \\ r(k) \end{bmatrix}$

و نابع زنبور راه‌راه (8) باند:

$J = (R_k - Y)^T R_k + \Delta U_T \Delta U$

(8)

به طوری که Y خروجی آن خط مشابه با $\hat{y}(k)$ که پیش‌سنجی شده و R_k معادل جمع می‌شود، و ΔU سطح ارتباطی خروجی به فضای کنترل می‌شود. در نتیجه ورودی اصلی پیش‌سنجی $r(k)$ برای خروجی $y(k)$ به صورت زیر می‌باشد:

$y(k) = s(k)$

(9)

2-3-کنترل پیشین همراه با قید

در دنیای معمولی‌های تاریک حالت محدودیت‌ها یا قید معنی‌داری یافت می‌شود. با توجه به اینکه سیستم مورد بررسی زیر به حرکت دراوری و اندازه‌گیری در حالت سطحی کنترل کننده‌های محدودیت‌ها به اندازه‌ای مناسب برای سیستم مورد بررسی نشان می‌دهد که به اندازه‌ای مناسب برای سیستم مولد 232
که رابطه بارگشتی آن به صورت (13) خواهد بود:
\[L(k + 1) = A_1 L(k) \]
\[f_R(z) = f_R(z) - 1 + \frac{1}{1 - a z^{-1}} \]
\[f_R(z) = \frac{\sqrt{1 - a z^{-1}}}{1 - a z^{-1}} \]
(13)

که در شرایط اولیه به صورت (14) خواهد داشت:
\[L(0)^T = \sqrt{\beta} \left[1 - a^2 - a^3 \ldots \right]^{-1} (n - 1) \]
(14)

\[\beta = \left(1 - a^2 \right) \]

\[G_{11} = \frac{x}{V_x} \text{if } V_x = 0 \]

\[G_{11} = \frac{x}{V_x} \text{if } V_x = 0 \]

\[G_{12} = \frac{y}{V_y} \text{if } V_y = 0 \]

\[G_{21} = \frac{y}{V_y} \text{if } V_y = 0 \]

\[G_{22} = \frac{y}{V_y} = 0 \]
(16)

هیمان طور که پیشتر ملاحظه شد، در هر نیمکی که بیش از حد نسبت به تغییرات است، گام محبوبه در بهبودی افزایش یافته است. بنابراین در هر نیمکی که بیش از حد نسبت به تغییراتquezت، گام محبوبه در بهبودی افزایش یافته است. بنابراین در هر نیمکی که بیش از حد نسبت به تغییرات

1- نتایج شبیه‌سازی مدل فاز جاپان

میزان نقطه قطب درجهای مقادیر بیش از حد نسبت به تغییرات گام محبوبه در بهبودی افزایش یافته است. بنابراین در هر نیمکی که بیش از حد نسبت به تغییراتquezت، گام محبوبه در بهبودی افزایش یافته است. بنابراین در هر نیمکی که بیش از حد نسبت به تغییرات

1- نتایج شبیه‌سازی مدل فاز جاپان

میزان نقطه قطب درجهای مقادیر بیش از حد نسبت به تغییرات گام محبوبه در بهبودی افزایش یافته است. بنابراین در هر نیمکی که بیش از حد نسبت به تغییراتquezت، گام محبوبه در بهبودی افزایش یافته است. بنابراین در هر نیمکی که بیش از حد نسبت به تغییرات

1- نتایج شبیه‌سازی مدل فاز جاپان

میزان نقطه قطب درجهای مقادیر بیش از حد نسبت به تغییرات گام محبوبه در بهبودی افزایش یافته است. بنابراین در هر نیمکی که بیش از حد نسبت به تغییراتquezت، گام محبوبه در بهبودی افزایش یافته است. بنابراین در هر نیمکی که بیش از حد نس
استخراج شده در فازه، در یک بخش به مورد بررسی قرار می‌گردد.

بازآرایی طبقه‌بندی 4 می‌توان مشاهده نمود که تفاوت بین خروجی والقوی سیستم (مورد بررسی در x و y) خروجی حامل از مدل بسیار تأخیر می‌باشد.

5- نتایج شبیه‌سازی شناسایی مدل در فازه

در این قسمت هدف این است که خروجی ربات باید تبدیل مدل گردید. از این جا که به طور کلی در تحقیق‌های موجود در زمینه خروجی موردی، در نظر گرفته شده است. در اینجا نیز مدل گسته‌سازی که سرعت زاویه‌ای (ورودی) را به شکل زاویه‌ای (خروجی) بر حسب درجه در هر لحظه مربوط می‌کند مدل خروجی ربات نامیده می‌شود که اولی (17)

\[\theta = G(q)G(q)G(q)G(q) \]

بنابراین در این فاز با نگاه به نحوه تعیین منجری و تغییر مستقل بودن کنترل‌خور و مدل استریت‌شده، درک ورودی که خروجی می‌باشد. مدل به‌دست‌آمده نهایی در قالب یک تبدیل گسسته می‌باشد. در جدول 5 ارائه شده است.

مشابه فاز جای‌گیری در این قسمت نیز تأثیر برای بارب تبدیل هر سه متغیر محسوس کردی و نتایج آن در جدول 6 مقدار و در این بخش نیز به تدبیل تابع در میان‌های متغیر در هر سه متغیر در نهایت تبدیل‌گردید. شکل 6 تقریباً مدل شباهت‌دار را با خروجی ورودی مقایسه می‌کند و نشان دهنده که مدل استریت‌شده نهایی در فازه شده خروجی نیز به خوبی مدل در فاز جای‌گیری می‌باشد.

Table 2 The comparison of first, second and third order

| وزن متوسط برای | 0.049 | تغییر سوخته‌کاره | 0.8 | تغییر وزن متوسط 2 | 1 |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| G11 | 3 | 1 | 1 | 1 |
| G12 | 5 | 3 | 2 | 1 |
| G13 | 7 | 5 | 2 | 1 |
| مرتبه | 89.8\% | 87.9% | 95.7% | 95.6% |
| درصد اطمینان | 95.3% | 95.7% | 95.6% | 95.7% |

می‌کند که برقراری‌ها نخستین رده شده، جریان قابل اعتماد است. در این مطالعه، خروجی مورد بررسی قرار داده می‌شود. اگر در مورد خروجی مورد اصلی، مدل کاربردی و کاربردی در مقدار این جدول 2 مقدار خروجی مورد بررسی بی‌تأمل، مدل (یا در حالت تغییر اندازه‌گیری) به‌طور نسبی می‌باشد. به‌طور کلی، مدل (یا در حالت تغییر اندازه‌گیری) به‌طور نسبی می‌باشد. به‌طور کلی، مدل (یا در حالت تغییر اندازه‌گیری) به‌طور نسبی می‌باشد.

Fig. 4 The Comparison of real and model output in forward path

شکل 4 مقایسه خروجی واقعی و خروجی حامل از مدل رو به جلو

Table 3 The transfer function of G11, G12, G13

<table>
<thead>
<tr>
<th>X (V)</th>
<th>G11 (10^{-4} s^{-1})</th>
<th>G12 (10^{-4} s^{-1})</th>
<th>G13 (10^{-4} s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.4327</td>
<td>0.0409</td>
<td>0.1475</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0409</td>
<td>0.0000</td>
<td>0.1475</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1475</td>
<td>0.0000</td>
<td>0.1475</td>
</tr>
</tbody>
</table>

Table 4 The transfer function of G12, G13

<table>
<thead>
<tr>
<th>X (V)</th>
<th>G12 (10^{-4} s^{-1})</th>
<th>G13 (10^{-4} s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.06681</td>
<td>0.0004</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0004</td>
<td>0.0114</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0114</td>
<td>0.05075</td>
</tr>
</tbody>
</table>

Table 5 The transfer function of G11, G12, G13

<table>
<thead>
<tr>
<th>X (V)</th>
<th>G11 (10^{-4} s^{-1})</th>
<th>G12 (10^{-4} s^{-1})</th>
<th>G13 (10^{-4} s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.7126</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.0003</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.033</td>
<td>0.2853</td>
<td></td>
</tr>
</tbody>
</table>

استفاده از روش حداکثر میانگین خطا می‌باشد. به‌طور کلی، نتایج برای این مدل.
6- ارزیابی مدل
در شناسایی مدل مورد نظر، یکی از فرض‌های ساده‌کننده‌ی این بود که سیستم تحت تأثیر خلوتی است و به‌همین دلیل مدل بدست آمده سیستم بازگشتی اثرات افزایش دارد. اگر نتیجه ارزیابی مدل مناسب باشد در سیستم، نتیجه ارزیابی منفی باشد باشد به کلیه مراحل قبل باید روشی نیاز مشکل مورد بررسی قرار گیرد [25].

یکی از روش‌های ارزیابی مدل، مقایسه خروجی واقعی و خروجی مدل شیب‌سازی یه با عبارت دکتر محسوسی خطای ماده (ضربه) می‌باشد.

جدول 5 مشخصات نتایج تبدیل

جدول 6 مقایسه خروجی واقعی و خروجی حاضر از مدل در حرمک به تغییر ربات

جدول 7 مشخصات نتایج تبدیل

و خوشه‌ی نیاز مشترک می‌باشد.

نتیجه‌بندی: در عملکرد مدل، همگی حاضر از آزمایش‌هایی بوده‌اند که باید در حالت مدل سایز مورد استفاده قرار گرفته‌اند در حالی که برای انجام این مدل آزمایش‌هایی با اعداد تغییرات مورد نظر در پردازش‌های مشابه انجام می‌گیرد. برای هر انجام این پردازش‌ها بدین نیاز است که سیستم نیاز به نوسازی‌هایی مدل توسط باید با سایر مقدار ذرت‌زایی سر مورد بررسی قرار گرفته و نتایج که

Fig. 5 The Comparison of real and model output in side walk path

Table 5 The transfer function of G123

ورودی	خروجی	راست
G13 = z^-6 × 1.748	0.00000	f_{vector} = 97.3322
1 - 1.001z^-1	0.0006	0.1868

جدول 6 مقایسه نتایج هرچه‌ی تابع تبدیل با مرجع‌های یکه‌ای، دو و سه

Table 6 The comparison of first, second and third order transfer function

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>0.8</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{11}</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>مرجع</td>
<td>97.3%</td>
<td>96.7%</td>
<td>97.3%</td>
<td>درصد اطمینان</td>
</tr>
</tbody>
</table>

Fig. 6 The comparison of real and model output

Fig. 7 The error diagram after identification G_{11}, G_{12}
را یک جای به‌دست‌آورد. بنابراین با ساختن یک دایره شکل 9 را به عنوان مسرور مربع، هدف ردبایی نمای منفی است. این دایره به شکل 9-1 را با جزئیات زیر طراحی می‌شود: بر اساس کنترل پیش‌بین مدل، طرح ربات و این ربات در نقطه ابتدا با مدل محدوده قرار دارد.

شکل 10 سیگنال کنترلی و نرخ تغییرات تحت فیلتر عرضه‌شده را برای ردبایی مسرور نشان می‌دهد. که از حدود پنجی شده تجاوز نکرده و تحت فیلتر مدل مشهور به سرعت ریت (1/Δt ≤ u ≤ 1) و نرخ تغییرات سرعت (0.5 ≤ Δu ≤ 0.5) وجود دارد. این ردبایی مسرور را به خوبی انجام می‌دهد.

شکل 8 نمودار خطای از شناسایی G12، G22
G12، G22

شکل 9 مدار مربع دایره در این شکل 9 را به عنوان مسرور مربع، هدف ردبایی نمای منفی است. این دایره به شکل 9-1 را با جزئیات زیر طراحی می‌شود: بر اساس کنترل پیش‌بین مدل، طرح ربات و این ربات در نقطه ابتدا با مدل محدوده قرار دارد.

شکل 10 سیگنال کنترلی و نرخ تغییرات تحت فیلتر عرضه‌شده را برای ردبایی مسرور نشان می‌دهد. که از حدود پنجی شده تجاوز نکرده و تحت فیلتر مدل مشهور به سرعت ریت (1/Δt ≤ u ≤ 1) و نرخ تغییرات سرعت (0.5 ≤ Δu ≤ 0.5) وجود دارد. این ردبایی مسرور را به خوبی انجام می‌دهد.
شکل 11 در نمای دو بعدی تولیدی کنترل پیوست در دو درجه حراری ربات در حضور عامل تغییرات در رابطه این می‌رود با نظر دو گرفت قبیل نمایش می‌دهد.

شکل 12 نتایج شبیه‌سازی ربات کنترل پیوست در حضور عامل تغییرات و سیگنال کنترلی می‌نمایه.

شکل 13 نتایج شبیه‌سازی ربات کنترل پیوست در حضور عامل تغییرات و سیگنال کنترلی می‌نمایه.

شکل 14 نتایج شبیه‌سازی ربات کنترل پیوست در حضور عامل تغییرات و سیگنال کنترلی می‌نمایه.

شکل 15 نتایج شبیه‌سازی ربات کنترل پیوست در حضور عامل تغییرات و سیگنال کنترلی می‌نمایه.

شکل 16 نتایج شبیه‌سازی ربات کنترل پیوست در حضور عامل تغییرات و سیگنال کنترلی می‌نمایه.

نتایج شبیه‌سازی ربات کنترل پیوست در حضور عامل تغییرات و سیگنال کنترلی می‌نمایه.
که از یک سیستم کنترل خوب مورد انتظار است. بنابراین مقایسه این دو روش کنترل در مقاله‌ی پیش‌تر ارائه شده و با استفاده از روشهایی مانند IAE، ISE و IAE که در تابع 7 به‌کارگرفته شده. در تصویر 14 نمودار ورودی به دست آمده است که در نمودار 15 نمودار ورودی به دست آمده است.

جدول 7 مقادیر IAE و ISE برای کنترل Trajectory Tracking

<table>
<thead>
<tr>
<th>روش کنترل</th>
<th>IAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>15.08</td>
<td>2.3</td>
</tr>
<tr>
<td>PID</td>
<td>3.65</td>
<td>1.99</td>
</tr>
</tbody>
</table>

شکل 14 سیر داروهای به همراه نوز نیز ماهیت که

شکل 15 پدیده‌عالی راه‌های این مدل مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل نیز مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل

جدول 8 مقایسه کنترل پیش‌تر و کنترل MPC

<table>
<thead>
<tr>
<th>روش کنترل</th>
<th>IAE</th>
<th>ISE</th>
<th>IAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>15.08</td>
<td>2.3</td>
<td>17.8</td>
<td>1.99</td>
</tr>
<tr>
<td>PID</td>
<td>3.65</td>
<td>1.99</td>
<td>3.65</td>
<td>1.99</td>
</tr>
</tbody>
</table>

شکل 16 سیر داروهای به همراه نوز نیز ماهیت که

شکل 17 پدیده‌عالی راه‌های این مدل مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل نیز مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل

جدول 9 مقایسه کنترل پیش‌تر و کنترل MPC

<table>
<thead>
<tr>
<th>روش کنترل</th>
<th>IAE</th>
<th>ISE</th>
<th>IAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>15.08</td>
<td>2.3</td>
<td>17.8</td>
<td>1.99</td>
</tr>
<tr>
<td>PID</td>
<td>3.65</td>
<td>1.99</td>
<td>3.65</td>
<td>1.99</td>
</tr>
</tbody>
</table>

شکل 18 سیر داروهای به همراه نوز نیز ماهیت که

شکل 19 پدیده‌عالی راه‌های این مدل مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل نیز مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل

جدول 10 مقایسه کنترل پیش‌تر و کنترل MPC

<table>
<thead>
<tr>
<th>روش کنترل</th>
<th>IAE</th>
<th>ISE</th>
<th>IAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>15.08</td>
<td>2.3</td>
<td>17.8</td>
<td>1.99</td>
</tr>
<tr>
<td>PID</td>
<td>3.65</td>
<td>1.99</td>
<td>3.65</td>
<td>1.99</td>
</tr>
</tbody>
</table>

شکل 20 سیر داروهای به همراه نوز نیز ماهیت که

شکل 21 پدیده‌عالی راه‌های این مدل مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل نیز مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل

جدول 11 مقایسه کنترل پیش‌تر و کنترل MPC

<table>
<thead>
<tr>
<th>روش کنترل</th>
<th>IAE</th>
<th>ISE</th>
<th>IAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>15.08</td>
<td>2.3</td>
<td>17.8</td>
<td>1.99</td>
</tr>
<tr>
<td>PID</td>
<td>3.65</td>
<td>1.99</td>
<td>3.65</td>
<td>1.99</td>
</tr>
</tbody>
</table>

شکل 22 سیر داروهای به همراه نوز نیز ماهیت که

شکل 23 پدیده‌عالی راه‌های این مدل مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل نیز مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل

جدول 12 مقایسه کنترل پیش‌تر و کنترل MPC

<table>
<thead>
<tr>
<th>روش کنترل</th>
<th>IAE</th>
<th>ISE</th>
<th>IAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>15.08</td>
<td>2.3</td>
<td>17.8</td>
<td>1.99</td>
</tr>
<tr>
<td>PID</td>
<td>3.65</td>
<td>1.99</td>
<td>3.65</td>
<td>1.99</td>
</tr>
</tbody>
</table>

شکل 24 سیر داروهای به همراه نوز نیز ماهیت که

شکل 25 پدیده‌عالی راه‌های این مدل مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل نیز مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل

جدول 13 مقایسه کنترل پیش‌تر و کنترل MPC

<table>
<thead>
<tr>
<th>روش کنترل</th>
<th>IAE</th>
<th>ISE</th>
<th>IAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>15.08</td>
<td>2.3</td>
<td>17.8</td>
<td>1.99</td>
</tr>
<tr>
<td>PID</td>
<td>3.65</td>
<td>1.99</td>
<td>3.65</td>
<td>1.99</td>
</tr>
</tbody>
</table>

شکل 26 سیر داروهای به همراه نوز نیز ماهیت که

شکل 27 پدیده‌عالی راه‌های این مدل مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل نیز مورد استفاده قرار گرفته. هدایت نیاز به استفاده از مدل

جدول 14 مقایسه کنترل پیش‌تر و کنترل MPC

<table>
<thead>
<tr>
<th>روش کنترل</th>
<th>IAE</th>
<th>ISE</th>
<th>IAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>15.08</td>
<td>2.3</td>
<td>17.8</td>
<td>1.99</td>
</tr>
<tr>
<td>PID</td>
<td>3.65</td>
<td>1.99</td>
<td>3.65</td>
<td>1.99</td>
</tr>
</tbody>
</table>
مدلی معتبر استخراج گردید. با بررسی سیستم بدون اعمال کنترل کننده و نتایج قابل قبول بدست آمده، نشان دهنده ماهیت سیستم به عنوان یک سیستم تابیدری و دست آمده است کنترل کننده پیشین متنی بر مدل پس از اعمال کنترل موقعیت ربات و ربات های مدل دیگر مورد بررسی و بررسی کنترل کننده پیشین بر مدل که در تحقیق این کار به یک پراتوی آزمایشگاه داشته بود به بازیابی کنترل کننده دقیقاً متنی بر مدل که این کنترل کننده به طور موقعیت آمیزی وابسته است توسط پیاده‌سازی سیستم.

Fig. 15 The Nao robot control design in Closed loop

![Fig. 15 The Nao robot control design in Closed loop](image)

Fig. 16 The Circular trajectory tracking with PID controller

![Fig. 16 The Circular trajectory tracking with PID controller](image)

Fig. 17 The control signal without constraint in PID controller

![Fig. 17 The control signal without constraint in PID controller](image)

Fig. 18 The circular tracking and control signal with constraint in PID

![Fig. 18 The circular tracking and control signal with constraint in PID](image)

Fig. 19 The PID performance in Circle trajectory tracking in the presence of disturbance

![Fig. 19 The PID performance in Circle trajectory tracking in the presence of disturbance](image)
Fig. 20 The PID performance in Circle trajectory tracking with the measurement noise

- 11- پیش دادن

- 12- مراجع

